Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32696960

ABSTRACT

BACKGROUND: Our previous studies showed increased angiotensin I-converting enzyme (ACE) activity in chronic schizophrenia (SCZ) patients compared to healthy control (HC) volunteers, and the relevance of combining ACE genotype and activity for predicting SCZ was suggested. METHODS: ACE activity was measured in plasma of ACE insertion/deletion (I/D) genotyped HC volunteers (N = 53) and antipsychotic-naïve first-episode psychosis (FEP) patients (N = 45), assessed at baseline (FEB-B) and also after 2-months (FEP-2M) of treatment with the atypical antipsychotic risperidone. RESULTS: ACE activity measurements showed significant differences among HC, FEP-B and FEP-2M groups (F = 5.356, df = 2, p = 0.005), as well as between HC and FEP-2M (post-hoc Tukey's multiple comparisons test, p = 0.004). No correlation was observed for ACE activity increases and symptom severity reductions in FEP as assessed by total PANSS (r = -0.131, p = 0.434). FEP subgrouped by ACE I/D genotype showed significant ACE activity increases, mainly in the DD genotype subgroup. No correlation between ACE activity and age was observed in FEP or HC groups separately (r = 0.210, p = 0.392), but ACE activity levels differences observed between these groups were influenced by age. CONCLUSIONS: The importance of measuring the ACE activity in blood plasma, associated to ACE I/D genotyping to support the follow-up of FEP patients did not show correlation with general symptoms amelioration in the present study. However, new insights into the influence of age and I/D genotype for ACE activity changes in FEP individuals upon treatment was demonstrated.

2.
World J Biol Psychiatry ; 21(1): 53-63, 2020 01.
Article in English | MEDLINE | ID: mdl-30806143

ABSTRACT

Objectives: Angiotensin I-converting enzyme (ACE) was initially correlated with schizophrenia (SCZ) in studies showing a correlation of ACE increased enzyme activity with memory impairments. Possible role for ACE in SCZ was also suggested by ACE activity interaction with dopaminergic mechanisms to modulate abnormalities of sensorimotor gating. In addition, we have demonstrated higher ACE activity in blood of SCZ subjects, its implication in cognitive performance in SCZ and its power as a predictor for SCZ diagnosis.Methods: ACE activity was determined in the serum and in selected brain regions of an animal model presenting SCZ-like behaviour, before and after the treatment with typical and atypical antipsychotics, and also in the serum of animals receiving the psychostimulants amphetamine/lisdexamphetamine.Results: Dopaminergic manipulations with antipsychotics and psychostimulants influenced the ACE activity, but with no correlation with the animal blood pressure.Conclusions: The validity of measuring ACE activity in animal blood to predict activity in the CNS, as well as the lack of correlation between the activity and blood pressure, before and after the treatment with antipsychotics, were confirmed here. Correlations of the present findings with data from clinical studies also strengthen the value of this animal model for studying several aspects of SCZ.


Subject(s)
Brain/metabolism , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Schizophrenia/blood , Schizophrenia/genetics , Amphetamine/pharmacology , Animals , Behavior, Animal/drug effects , Brain/drug effects , Central Nervous System Stimulants/pharmacology , Disease Models, Animal , Dopamine/metabolism , Male , Rats , Rats, Wistar
3.
Biomolecules ; 9(6)2019 05 28.
Article in English | MEDLINE | ID: mdl-31141959

ABSTRACT

Invasive Candida infections are an important growing medical concern and treatment options are limited to a few antifungal drug classes, with limited efficacies depending on the infecting organism. In this scenario, invasive infections caused by multiresistant Candida auris are emerging in several places around the world as important healthcare-associated infections. As antimicrobial peptides (AMPs) exert their activities primarily through mechanisms involving membrane disruption, they have a lower chance of inducing drug resistance than general chemical antimicrobials. Interestingly, we previously described the potent candicidal effect of a rattlesnake AMP, crotamine, against standard and treatment-resistant clinical isolates, with no hemolytic activity. We evaluated the antifungal susceptibility of several Candida spp. strains cultured from different patients by using the Clinical and Laboratory Standards Institute (CLSI) microdilution assay, and the antifungal activity of native crotamine was evaluated by a microbial growth inhibition microdilution assay. Although all Candida isolates evaluated here showed resistance to amphotericin B and fluconazole, crotamine (40-80 µM) exhibited in vitro activity against most isolates tested. We suggest that this native polypeptide from the South American rattlesnake Crotalus durissus terrificus has potential as a structural model for the generation of a new class of antimicrobial compounds with the power to fight against multiresistant Candida spp.


Subject(s)
Candida/drug effects , Crotalid Venoms/pharmacology , Crotalus , Drug Resistance, Fungal/drug effects , Drug Resistance, Multiple/drug effects , Peptides/pharmacology , Animals , Geography , Humans , Microbial Sensitivity Tests , Phenotype
4.
Schizophr Res ; 208: 202-208, 2019 06.
Article in English | MEDLINE | ID: mdl-30857875

ABSTRACT

Our previous studies showed reduced Ndel1 enzyme activity in patients with chronic schizophrenia (SCZ), and only a subtle NDEL1 mRNA increases in antipsychotic-naïve first-episode psychosis (FEP) individuals compared to matched healthy controls (HC). Aiming to refine the evaluation of Ndel1 enzyme activity in early stages of psychosis, we compared 3 groups composed by (1) subjects at ultra-high-risk (UHR) for psychosis, (2) a cohort comprising antipsychotic-naïve FEP individuals (assessed in three moments, at baseline (FEP-0), and after 2 months (FEP-2 M) and one year (FEP-1Y) of treatment with risperidone), and (3) a HC group. There was no significant difference in Ndel1 enzyme activity between UHR and HC, but this activity was significantly lower in FEP compared to HC. Conversely, Ndel1 activity in HC groups was higher than in FEP even before (FEP-0) or after the treatment with risperidone (FEP-2 M and FEP-1Y), and with progressive decrease of Ndel1 activity and significant improvement of symptoms observed after this treatment. In addition, a positive correlation was observed for Ndel1 activity with clinical symptoms as assessed by PANSS, while a negative correlation was seen for GAF scores. Our results suggest that reductions in Ndel1 activity in FEP may be possibly related to responses to the illness, rather than to the pharmacological effects of antipsychotics, which might be acting essentially in the symptoms suppression. This hypothesis might be further evaluated in prospective long-term follow-up studies with a larger sample cohort.


Subject(s)
Carrier Proteins/blood , Peptide Hydrolases/blood , Schizophrenia/blood , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Biomarkers/blood , Cohort Studies , Disease Progression , Female , Humans , Male , Prodromal Symptoms , Psychiatric Status Rating Scales , Risk , Risperidone/therapeutic use , Schizophrenia/drug therapy , Treatment Outcome , Young Adult
5.
J Affect Disord ; 244: 67-70, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30321766

ABSTRACT

BACKGROUND: Abnormal activity of two enzymes relevant to neurodevelopment, namely nuclear-distribution element-like 1 (Ndel1) and angiotensin I-converting enzyme (ACE), was reported in individuals with schizophrenia; to our knowledge, these oligopeptidases were never measured in bipolar disorder (BD). AIMS: Evaluate the enzyme activity of Ndel1 and ACE in euthymic individuals with BD type 1 which was compare to healthy control (HC) group. METHODS: Ndel1 and ACE activities were assessed in the serum of individuals with BD type 1 according to DSM-IV criteria (n = 70) and a HC group (n = 34). The possible differences between BD type 1 and HC groups were evaluated using Analysis of Covariance (ANCOVA), and the results were adjusted for age, gender and body mass index. RESULTS: We observed a positive correlation between Ndel1 activity and the total YMRS score in BD group (p = 0.030) and a positive correlation between ACE activity and Ham-D score (p = 0.047). ANCOVA analysis showed lower Ndel1 activity in BDs compared to HCs. Interestingly, we did not observe between-groups differences in ACE activity, despite the recognized correlation of ACE activity levels with cognitive functions, also described to be worsened in psychiatric patients. CONCLUSION: Oligopeptidases, especially Ndel1, which has been strongly correlated with neurodevelopment and brain formation, are potentially a good new target in the study of the neurobiology of BD. LIMITATIONS: The relatively small sample size did not permit to examine the cause-effect relationship of clinical dimensions of BD and the enzymatic activity.


Subject(s)
Bipolar Disorder/blood , Bipolar Disorder/enzymology , Carrier Proteins/blood , Peptidyl-Dipeptidase A/blood , Adolescent , Adult , Case-Control Studies , Diagnostic and Statistical Manual of Mental Disorders , Female , Humans , Male , Middle Aged , Young Adult
6.
Article in English | MEDLINE | ID: mdl-30578843

ABSTRACT

The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.


Subject(s)
Antipsychotic Agents/pharmacology , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Behavior, Animal/physiology , Caenorhabditis elegans , Clozapine/pharmacology , Disease Models, Animal , Haloperidol/pharmacology , Movement/drug effects , Movement/physiology , Neurotransmitter Agents/pharmacology , Pharynx/drug effects , Pharynx/metabolism , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results , Reproduction/drug effects , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serotonin/pharmacology
7.
Amino Acids ; 50(2): 267-278, 2018 02.
Article in English | MEDLINE | ID: mdl-29235017

ABSTRACT

The efficacy of crotamine as antitumoral was first demonstrated by daily intraperitoneal (IP) injections of low doses of this toxin in an animal model bearing melanoma tumors. Significant inhibition of tumor growth and increased lifespan of mice bearing tumor was also noticed after 21 consecutive days of this daily IP administration of crotamine. However, due to the limited acceptance of treatments by IP route in clinical conditions, herein, we evaluated the antitumor effect of this native polypeptide employing the oral route. The efficacy of crotamine in inhibiting the melanoma growth in vivo, even after passing through the gastrointestinal tract of the animal, was confirmed here. In addition, biochemical biomarkers and also histopathological analysis showed both the absence of any potential toxic effects in tissues or organs of the animal in which the highest accumulation of crotamine is expected. Interestingly, a reduction of weight gain was observed mainly in animals with tumor treated with crotamine by IP route, but not by oral administration. Albeit, oral administered crotamine was able to significantly decrease the body weight gain of healthy animals without tumor. Taking advantage of this same experimental animal models receiving crotamine by oral route, it was possible to show metabolic changes as the increased capacity of glucose clearance, which was accompanied by a reduction of the total cholesterol, and by increased high-density lipoprotein levels, both observed mainly in the absence of tumor. Triglycerides and low-density lipoprotein were also significantly decreased, but only in the absence of tumor. Taken together, these data suggest a clear trend for metabolic positive effects and mischaracterize unhealthy condition of animals, with or without tumors, treated with crotamine for 21 days. In addition, this study confirmed the efficacy of crotamine administered by oral route as antitumor agent, which besides the additional advantage of administration convenience and decreased risk of toxic effects, allowed the serendipitous observation of several positive metabolic effects on treated animals.


Subject(s)
Crotalid Venoms/administration & dosage , Crotalid Venoms/pharmacology , Melanoma, Experimental/drug therapy , Metabolome/drug effects , Snake Venoms/chemistry , Administration, Oral , Amino Acid Sequence , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Crotalid Venoms/toxicity , Crotalus , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Weight Gain/drug effects
8.
J Phys Chem B ; 118(20): 5471-9, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24754574

ABSTRACT

Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial ß-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine's selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.


Subject(s)
Crotalid Venoms/chemistry , Crotalus/metabolism , Unilamellar Liposomes/chemistry , Amino Acid Sequence , Animals , Antifungal Agents/pharmacology , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microscopy , Molecular Sequence Data , Unilamellar Liposomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...