Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Dent Med Probl ; 61(3): 319-321, 2024.
Article in English | MEDLINE | ID: mdl-38661478

ABSTRACT

The challenge of dental ceramic degradation necessitates innovative technology, rigorous testing and proactive dental care, demanding collaboration between researchers, dentists and patients to ensure durable and reliable dental restorations.


Subject(s)
Ceramics , Humans , Dental Porcelain , Dental Materials , Dental Restoration Failure , Materials Testing
2.
Int Dent J ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38461097

ABSTRACT

OBJECTIVE: The aim of the present study was to evaluate the influence of multidirectional brushing on the surface roughness, morphology, and bonding interface of resin-repaired CAD-CAM ceramic and composite restorations. MATERIALS AND METHODS: Twelve (N = 12) blocks (4 mm × 4 mm × 2 mm for parallel axis; 5 mm × 4 mm × 2 mm for perpendicular axis) of lithium disilicate glass-ceramic (IPS e.max CAD, Ivoclar AG) and CAD-CAM resin composite (Tetric CAD, Ivoclar AG) were obtained and repaired with direct resin composite (Clearfil AP-X, Kuraray). An abrasive slurry was prepared and the brushing was performed according to each restorative material and axis of brushing (n = 6; perpendicular to repair interface and parallel to repair interface) during 3,650 cycles (240 strokes per minute) to simulate 3 years of brushing. The surface roughness (Ra) and the profile variation for each material (restoration and direct repair resin composite) were measured at the baseline condition and after brushing, and the mean roughness and presence of steps at the repair interface were evaluated through factorial analysis of Variance (ANOVA). Scanning Electron Microscopy (SEM) images were taken to evaluate the surface topography of the repaired materials after brushing. RESULTS: The mean roughness of the repaired CAD-CAM restorations was affected by the brushing (P < .05), mainly when evaluating the repair material and the interface (P < .05), while the restorative CAD-CAM materials presented more stable values. The profile evaluation showed higher steps at the interface when repairing lithium disilicate than for CAD-CAM resin composite. CONCLUSION: Repaired CAD-CAM restorations were susceptible to wear after brushing simulation. The surface roughness of the direct resin composite was the most affected leading to step development at the interface, particularly in the repaired lithium disilicate samples. Cinical maintenance recalls and polishing protocols must be considered to enhance the longevity of such restorations.

3.
Heliyon ; 10(6): e28129, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515675

ABSTRACT

This study aimed to investigate the effect of four retention systems for implant-supported posterior crowns under compressive loading using three-dimensional finite element analysis. A morse-taper dental implant (4.1 × 10 mm) was designed with Computer Aided Design software based on non-uniform rational B-spline surfaces. According to International Organization for Standardization 14,801:2016, the implant was positioned at 3 mm above the crestal level. Then four models were designed with different crown retention systems: screw-retained (A), cement-retained (B), lateral-screw-retained (C), and modified lateral-screw-retained (D). The models were imported to the analysis software and mesh was generated based on the coincident nodes between the juxtaposed lines. For the boundary conditions, two loads (600 N) were applied (axial to the implant fixture and oblique at 30°) totaling 8 conditions according to retention design and loading. The von-Mises stress analysis showed that different retention systems modify the stress magnitude in the implant-supported posterior crown. There is a similar stress pattern in the implant threads. However, models C and D presented higher stress concentrations in the crown margin in comparison with A and B. The oblique loading highly increased the stress magnitude for all models. In the simulated conditions, part of the stress was concentrated at the lateral screw under axial loading for model C and oblique loading for model D. The results indicate a possible new failure origin for crown retained using lateral screws in comparison to conventional cement-retained or screw-retained systems.

4.
Clin Oral Investig ; 28(2): 149, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355823

ABSTRACT

OBJECTIVE: The study aims to evaluate the shear bond and flexural strength fatigue behavior of yttrium-stabilized zirconia (4YSZ) repaired using different resin composites. MATERIALS AND METHODS: Cylindric specimens of 4YSZ were obtained for the bond strength (Ø = 6 mm, 1.5 mm of thickness) and biaxial flexural strength (Ø = 15 mm, 1 mm of thickness) fatigue tests and divided into 3 groups according to the repair resin composite: EVO (nanohybrid), BULK (bulk-fill), and FLOW (flowable). The zirconia surface was air-abraded with alumina particles, a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) primer was applied, and the resin composite was build-up over the zirconia. Fatigue shear bond strength and flexural fatigue strength tests were performed (n = 15). One-way ANOVA and Tukey post hoc tests were carried out for both outcomes, besides scanning electron microscopy and finite element analysis. RESULTS: The repair material affected the fatigue shear bond strength of zirconia ceramic. The BULK group (18.9 MPa) depicted higher bond strength values than FLOW (14.8 MPa) (p = 0.04), while EVO (18.0 MPa) showed similar results to both groups. No effect was observed for the mechanical behavior (p = 0.53). The stress distribution was similar for all groups. CONCLUSION: The repair of yttrium-stabilized zirconia (4YSZ) ceramics with bulk-fill resin composites was the best option for high fatigue bond strength. However, the fatigue mechanical performance was similar regardless of the applied repair material. CLINICAL RELEVANCE: The repair of yttrium-stabilized zirconia (4YSZ) monolithic restorations may be performed with nanohybrid and bulk-fill resin composites in order to promote longevity in the treatment.


Subject(s)
Dental Bonding , Methacrylates , Dental Bonding/methods , Surface Properties , Materials Testing , Composite Resins/chemistry , Zirconium/chemistry , Ceramics/chemistry , Shear Strength , Yttrium/chemistry , Resin Cements/chemistry , Dental Stress Analysis
5.
Eur J Dent ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198813

ABSTRACT

OBJECTIVES: The aim of the study was to evaluate the effect of surface treatment and resin cement on the bond strength of conventional and advanced lithium disilicates (ALDs). MATERIALS AND METHODS: Ceramic slices (2 × 13 × 15 mm) of conventional lithium disilicate (LD) (IPS e.max CAD) and ALD (CEREC Tessera) were sectioned, polished, and divided into 16 groups (n = 10) according to the factors: ceramic, surface treatment, and resin cement (Panavia V5 and Variolink Esthetic DC). Surface treatments consisted of hydrofluoric acid 4.9% etching for 20 seconds (Hf20) or 30 seconds (Hf30), self-etching ceramic primer (Se), and sandblasting (Sb). Then, a resin cement cylinder (Ø = 2.5 mm) was manufactured on each specimen's surface. The specimens were then submitted to a shear bond strength (SBS) test. Surface roughness was evaluated through a contact profilometer, and surface morphology was evaluated under scanning electron microscopy for qualitative analysis. STATISTICAL ANALYSIS: Two-way analysis of variance (ANOVA) was used to analyze the data of SBS and surface roughness. For bond strength, the effects of surface treatment, resin cement, and the interaction were analyzed for each ceramic. For roughness, analyzed factors include ceramic and surface treatment. RESULTS: ANOVA revealed that ceramic (p = 0.047) and surface treatment (p < 0.001) factors affected the bond strength, while the cements performed similarly. Both materials showed adequate bond strength (ALD 19.1 ± 7.7 MPa; LD 17.1 ± 7.9 MPa). Sb protocol showed the lowest mean value (9.6 ± 2.9 MPa) compared with Hf20 (22.0 ± 7.1 MPa), Hf30 (21.7 ± 7.4 MPa), and Se (19.3 ± 6.0 MPa). CONCLUSION: For both ceramics, the highest performance was obtained after applying Se and Hf20 or Hf30. Therefore, longer etching time is unnecessary. Sb protocol must be avoided.

6.
Heliyon ; 10(1): e23709, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187296

ABSTRACT

Objective: To evaluate the effect of different surface treatments on the morphology, shear bond, and flexural fatigue strength of a repaired translucent zirconia. Methods: Monolithic disc-shaped specimens of translucent zirconia were prepared and ground to simulate repair areas. Four groups underwent different treatments: Air-MDP (air-abrasion with alumina particles and 10-MDP primer), Si-Sil (silica-coated alumina particles with MDP-containing silane), Si-MDP (silica coating with 10-MDP primer), and Uni adhe (universal adhesive). After roughness measurements and treatments, repairs were done using resin composite. Shear bond and flexural (n = 15) fatigue tests were performed. Surface topography, interfacial analysis, fractographic, and finite element analysis were conducted. Results: The zirconia roughness was similar between the groups, however, the surface topography was modified according to the surface treatments. Si-Sil generated higher and more stable bond strength values (20.69 MPa) between translucent zirconia and resin composite when compared to Uni adhe (15.75 MPa) considering the fatigue bond strength scenario, while it was similar to Si-MDP (17.70 MPa) and Air-MDP (18.97 MPa). Regarding the mechanical behavior, Si-Sil (680.83 MPa) also showed higher and significantly different fatigue strength when compared to Uni adhe (584.55 MPa), while both were similar to Si-MDP (634.22 MPa) and Air-MDP (641.86 MPa). Conclusion: The association of mechanical and chemical approaches is essential for long-term bond strength and optimized mechanical behavior, being air-abrasion protocols and the use of silane and/or MDP-based primers suitable for zirconia repair protocols. It was found that relying solely on a universal adhesive was not as effective as other options available. Clinical significance: The surface treatment of repair protocols affects translucent zirconia's morphology. To enhance fatigue behavior in repaired monolithic zirconia, air abrasion is crucial. Exclusive use of a universal adhesive is less effective than other choices. A primer containing silane/MDP holds the potential for stable bond strength and optimized mechanical performance.

7.
J Mech Behav Biomed Mater ; 151: 106394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218045

ABSTRACT

This in vitro study assessed the effectiveness of three cleaning protocols (air-water spray, 37% phosphoric acid, or Ivoclean) on lithium disilicate restorations' fatigue behavior after try-in paste application, compared to a clean condition. Lithium disilicate discs (IPS e.max CAD, Ivoclar) with Ø-= 12 mm and 1 mm thickness were prepared from prefabricated CAD-CAM blocks, polished, subjected to CAD-CAM milling topography simulation and crystallization. After, etching with 5% hydrofluoric acid and the application of try-in paste (Variolink try-in paste shade white; load of 2.5 N for 5 min) was performed. Discs that received try-in paste were divided into three groups according to the removal protocol: SPRAY - air-water spray for 30 s; HPO - active application of 37% phosphoric acid for 60 s; IVOC - application of Ivoclean for 20 s. Control group (CTRL group) did not receive the try-in paste application. Half of the specimens (n= 15) were tested in the baseline condition (24 h up to 7 days), and the others underwent 25,000 thermal cycles (5 - 55 °C) + 210 days of distilled water storage (37 °C). Additional specimens (n= 3) underwent monotonic testing (1 mm/min). Fatigue testing involved a cyclic fatigue approach (20 Hz, initial load = 100 N - 5000 cycles, step size = 50 N - 10,000 cycles) until a visible crack appeared. Fractographic and topographic analyses were performed. Fatigue data were statistically analyzed with two-way ANOVA, Kaplan-Meier log-rank (Mantel-Cox), and independent t-test (α= 0.05). In the baseline condition, the IVOC group resulted in a superior fatigue behavior compared to the CTRL and SPRAY groups, but similar to the HPO group. The HPO and SPRAY presented a similar fatigue behavior to the CTRL group. It was noticed a decrease in fatigue behavior after aging, which resulted in all the cleaning protocols leading to similar fatigue behavior compared to the CTRL group. On the SPRAY group surface, try-in pastes remnants were noticed. In summary, despite a detrimental impact at baseline conditions, all tested cleaning protocols seem proper to remove the try-in paste from the ceramic's surface in the long-term evaluation.


Subject(s)
Ceramics , Dental Porcelain , Phosphoric Acids , Surface Properties , Materials Testing , Ceramics/chemistry , Computer-Aided Design , Water , Dental Stress Analysis
8.
Dent Mater ; 40(2): 190-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977991

ABSTRACT

OBJECTIVE: The aim of the study was to evaluate the influence of surface polishing and printing layer orientation on the fatigue behaviour of 3 mol% yttria-stabilized zirconia (3Y-TZP) by stereolithography (SLA) in comparison with subtractive manufacturing. MATERIALS AND METHODS: 60 experimental zirconia bar-shaped specimens were 3D-printed (P) via SLA, and 30 specimens were milled (M) from commercial zirconia block (Lava™ Frame, 3 M ESPE AG). All specimens had the same dimensions (1 mm × 1 mm x 12 mm) after sintering. The 3D-printed specimens were randomly divided according to printing orientations: parallel or perpendicular to the tensile surface in the fatigue test. The specimens were subsequently submitted to two surface finishing protocols (n = 15/gr): unpolished or polished. Their phase compositions were analysed by X-ray diffraction. The fatigue behaviour was evaluated by a stepwise approach. RESULTS: The milled and both 3D-printed groups showed similar phase compositions for the as-sintered condition. Considerable amounts of rhombohedral phase were detected after polishing. Milled unpolished samples presented significantly higher fatigue strength than 3D-printed unpolished samples. Polishing did not improve the fatigue strength for milled zirconia but was advantageous for the 3D-printed specimens. 3D-printed specimens with parallel printing-layer orientation were significantly stronger than specimens with perpendicular layers regardless of surface finishing. CONCLUSION: The manufacturing techniques had a significant influence on the fatigue strength of 3Y-TZP, but not on the phase compositions of the surface. The polishing protocol showed different effects on 3Y-TZP fatigue strength and induced phase transition of the 3Y-TZP from Tetragonal to Rhombohedral. The best fatigue strength was achieved through milling using an unpolished surface and SLA-printed layers that were parallel to the tensile surface, followed by polishing.


Subject(s)
Yttrium , Zirconium , Materials Testing , Surface Properties , Printing, Three-Dimensional , Dental Materials , Dental Polishing , Ceramics
9.
Dent J (Basel) ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37999018

ABSTRACT

This study evaluated the mechanical behavior and risk of failure of three CAD-CAM crowns repaired with different resin composites through a three-dimensional (3D) finite element analysis. Three-dimensional models of different cusp-repaired (conventional nanohybrid, bulk-fill, and flowable resin composites) crowns made of zirconia, lithium disilicate, and CAD-CAM resin composite were designed, fixed at the cervical level, and loaded in 100 N at the working cusps, including the repaired one. The models were analyzed to determine the Maximum Principal and Maximum Shear stresses (MPa). Complementary, an in vitro shear bond strength test (n = 10) was performed to calculate the risk of failure for each experimental group. The stress distribution among the models was similar when considering the same restorative material. The crown material affected the stress concentration, which was higher for the ceramic models (±9 MPa for shear stress; ±3 MPa for tensile stress) than for the CAD-CAM composite (±7 MPa for shear stress; ±2 MPa for tensile stress). The shear bond strength was higher for the repaired CAD-CAM resin composite (±17 MPa) when compared to the ceramics (below 12 MPa for all groups), while the repair materials showed similar behavior for each substrate. The stress distribution is more homogenous for repaired resin composite crowns, and a flowable direct resin composite seems suitable to repair ceramic crowns with less risk of failure.

10.
Int J Dent ; 2023: 8882878, 2023.
Article in English | MEDLINE | ID: mdl-37780934

ABSTRACT

Purpose: In case of need for esthetical improvement of zirconia restorations, an individualization using extrinsic staining can be applied. This study aimed to evaluate the surface roughness and fatigue strength (survival) of high-translucency zirconia (3Y-TZP, YZ®HT, Vita Zanhfabrik) with extrinsic characterization and/or glaze. Methods: Sixty (60) zirconia discs (12 × 1.2 mm) were obtained, sintered, and randomly distributed among three groups (n = 20) according to the surface finishing protocol: C (control), C + G (extrinsic characterization followed by a glaze layer), and G (glaze layer). The surface roughness (Ra) was analyzed with a contact profilometer. Subsequently, the specimens were subjected to a fatigue load profile starting at 120 N during 20,000 cycles at 4 Hz frequency, with a 5% increase at each step until failure. The failed specimens were evaluated under a stereomicroscope. Surface roughness analysis was evaluated by using one-way ANOVA and post hoc Tukey tests (95%); while fatigue survival probability was analyzed with Kaplan-Meier and Mantel-Cox (log- rank, 95%). Results: One-way ANOVA revealed that surface roughness was affected by the finishing protocol, where C + G showed the highest mean value (0.46 ± 0.18 µm)A followed by G (0.30 ± 0.10 µm)B, and C (0.19 ± 0.02 µm)C. While for fatigue strength, the G protocol presented a higher mean value (243.00, and 222.36-263.63)A, followed by C + G (192.75 and 186.61-198.88)B and C (172.50 and 159.43-185.56)C. Conclusion: Surface finishing protocols modify the surface roughness and fatigue strength of high-translucent zirconia. Regardless of the surface roughness, both glazing protocols improved the ceramic fatigue strength, favoring the restoration's long-term survival.

11.
Clin Oral Investig ; 27(11): 6429-6438, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37726488

ABSTRACT

OBJECTIVE: To study the influence of glazing on strength repair of lithium disilicate glass-ceramics after defect incorporation in different production processing phases. MATERIALS AND METHODS: Bar-shaped specimens (1 × 1 × 12 mm, n = 280; 20/group) made from different lithium disilicate ceramics (IPS e.max CAD, Ivoclar, "LD" or advanced lithium disilicate CEREC Tessera, Dentsply Sirona, "ALD") were exposed to 7 different protocols: crystallized without (c) and with glaze layer (cg), with a defect incorporated before crystallization without (ic) and with glaze layer (icg), with a defect after crystallization without (ci) or with glaze layer (cig), and defect incorporated after the glaze layer (cgi). The flexural strength was determined using the three-point bending test. Analysis of indented areas and fractured specimens was performed by scanning electron microscopy. Flexural strength data were evaluated by two-way ANOVA followed by Tukey tests (α = 5%). RESULTS: Two-way ANOVA revealed a significant influence of ceramic (p < 0.001; F = 55.45), protocol (p < 0.001; F = 56.94), and the interaction protocol*ceramic (p < 0.001; F = 13.86). Regardless of ceramics, defect incorporation as final step resulted in the worst strength, while defects introduced before crystallization did not reduce strength. Glaze firing after defect incorporation led to strength repair for ALD, whereas such an effect was not evident for LD. CONCLUSIONS: The advanced lithium disilicate must receive a glaze layer to achieve its highest strength. Defects incorporated in the pre-crystallized stage can be healed during crystallization. Defects should not be incorporated after glazing. CLINICAL RELEVANCE: Clinical adjustments should be performed on pre-crystallized or crystalized restorations that receive a glazer layer afterwards.


Subject(s)
Ceramics , Dental Porcelain , Materials Testing , Surface Properties , Dental Porcelain/chemistry , Ceramics/chemistry , Flexural Strength , Computer-Aided Design , Lithium
12.
J Prosthet Dent ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37690857

ABSTRACT

STATEMENT OF PROBLEM: The success rate of monolithic polymer-infiltrated ceramic posterior crowns after 1 year is unclear. PURPOSE: The purpose of this controlled, randomized, and double-blind clinical trial was to evaluate the performance of posterior complete crowns in polymer-infiltrated and lithium disilicate ceramics and to assess the impact of oral rehabilitation on esthetic satisfaction, quality of life, and periodontal health. MATERIAL AND METHODS: A total of 33 crowns were provided in 18 participants allocated to 2 groups: Control (Lithium disilicate-IPS e.max CAD; Ivoclar AG) and Experimental (Polymer-infiltrated ceramic-Vita Enamic; Vita Zahnfabrik). The crowns were evaluated before treatment (T0) and after 1 (T1), 6 (T2), and 12 (T3) months by using modified United States Public Health Service (USPHS) criteria, visual analog scales (VASs), oral impacts on daily performances (OIDP), and periodontal parameters. Survival analysis was performed by using Kaplan-Meier followed by the log-rank test (α=.05). The OIDP and USPHS data were analyzed descriptively while VASs for esthetic satisfaction and periodontal parameters were statistically evaluated by using the Mann-Whitney Friedman, and Wilcoxon post hoc tests. RESULTS: For 18 participants with a mean age of 47.2 years, 19 crowns were manufactured in lithium disilicate and 14 in polymer-infiltrated ceramic. The Kaplan-Meier test revealed similar survival rates of 92.5% for polymer-infiltrated ceramic and 94.7% for lithium disilicate (P>.05). The analysis of periodontal parameters revealed a significant increase in the bleeding on probing (BOP) for polymer-infiltrated ceramics (P=.032) but for lithium disilicate, it was not significant (P=.387). CONCLUSIONS: Survival rates between the evaluated materials were not significantly different, with acceptable clinical performance after 1 year of follow-up.

13.
Heliyon ; 9(7): e17787, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449193

ABSTRACT

Objective: To evaluate the mechanical properties of different CAD/CAM ceramic systems and the post-fatigue fracture and stress distribution when used as cemented crowns. Materials and methods: Sixty (60) CAD/CAM monolithic crowns were milled using three different ceramic materials (FD - Feldspathic [Vita Mark II]), LE - Leucite-based ceramic [IPS Empress CAD] and LD - Lithium Disilicate [IPS e.max CAD]) and adhesively cemented on resin composite dyes. Specimens were stored in distillated water (37 °C) for 7 days. After, half of the crowns were submitted to immediate fracture load test while the other half was submitted to fatigue cycling. The average cement layer of approximately 80 µm was assessed using scanning electron microscopy (SEM). The average thickness was used in the three-dimensional (3D) Finite Element Analysis (FEA). For each ceramic material, the density, Poisson ratio, shear modulus, Young modulus, fracture toughness, and true hardness were assessed (n = 3). The data was used to assess the Maximum Principal Stress throughout 3D-FEA according to each material during load to fail and post-fatigue. Data were submitted to two-way ANOVA and Tukey test (α = 0.05). Results: LD showed the highest compression load, density, shear modulus, Young modulus, fracture toughness and true hardness values. While LE presented the lowest mechanical properties values. There is no difference in the Poisson ratio between the evaluated ceramics. Conclusion: LD was susceptible to aging process but presented stronger physicomechanical properties, showing the highest post-fatigue fracture load and highest stress magnitude.

14.
J Prosthet Dent ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36801103

ABSTRACT

STATEMENT OF PROBLEM: Whether the replacement of a missing tooth with a fixed partial denture supported by an endodontically treated abutment could be improved with endocrowns is unclear. PURPOSE: The purpose of the study was to evaluate the mechanical behavior of a fixed partial denture (FPD) according to the preparation of the abutment teeth (endocrown or complete crown) in terms of stress magnitude in the prosthesis, cement layer, and tooth. MATERIAL AND METHODS: A posterior model with 2 abutment teeth (first molar and first premolar) was modeled with a computer-aided design (CAD) software program for conducting a 3-dimensional finite element analysis (FEA). To replace the missing second premolar, the model was replicated in different possible FPDs according to the abutment preparation design (complete crown [Conventional], 2 endocrowns [EC]) or an endocrown on one of the abutment teeth (first molar [ECM] and first premolar [ECP]) for a total of 4 designs. All FPDs were in lithium disilicate. The solids were imported to an analysis software program (ANSYS 19.2) in the standard for the exchange of product data (STEP) format. The mechanical properties were considered isotropic and the materials to show linear elastic and homogeneous behavior. An axial load (300 N) was applied at the occlusal surface of the pontic. The results were evaluated by colorimetric stress maps of von Mises and maximum principal stress in the prosthesis, maximum principal stress and shear stresses on the cement layer, and maximum principal stress in the abutment teeth. RESULTS: The von Mises stresses revealed that all FPD designs behaved similarly and that, considering the maximum principal stress criteria, the pontic was the most stressed region. For the cement layer, the combined designs presented an intermediate behavior, with the ECM more suitable to reducing the stress peak. The conventional preparation allowed less stress concentration in both teeth, and higher stress concentration in the premolar was observed with an endocrown. The endocrown decreased the risk of fracture failure. Considering the risk of debonding failure for the prosthesis, the endocrown preparation was only able to decrease the failure risk when the EC design was used and when only the shear stress was considered. CONCLUSIONS: Performing endocrown preparations to retain a 3-unit lithium disilicate FPD is an alternative to conventional complete crown preparations.

15.
J Funct Biomater ; 14(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36826908

ABSTRACT

This study evaluated the effect of pH and temperature on the ion (F- and Ca2+) release of a resin-based material containing alkaline fillers and a self-setting high-viscous glass ionomer cement. Disks were prepared according to manufacturers' instructions for both materials: the EF group (Equia Forte HT filling, GC) and the CN group (Cention N, Ivoclar). Specimens were immersed in 50 mL buffer solution with three different pHs (4.8, 6.8, and 8.8), and stored at 0°, 18°, 37°, and 44 °C. After 24 h, 7 d, and 28 d, cumulative F- and Ca2+ releases were analyzed by chromatography and mass spectrometry, and pH was measured. Both materials showed minimal changes in pH with final values after 28 d of 5.17 ± 0.56 for CN and 5.12 ± 0.24 for EF. In all experimental conditions, the percentages of ion release were higher for EF than for CF. In particular, both materials showed a significant difference in temperature in F- release. Regardless of the pH values, the highest Ca2+ ion release was after 28 days, with a significant difference in temperature for CN and EF. Within the limit of this study, the temperature storage influenced ion release and the high-viscous glass ionomer showed the maximum values.

16.
Int Dent J ; 73(5): 612-619, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36509557

ABSTRACT

PURPOSE: This study aimed to evaluate the fracture resistance and stress magnitude of occlusal veneers made of conventional or flowable resin composites at different minimal thicknesses bonded on enamel or dentin. MATERIAL AND METHODS: A total of 120 sound bovine incisors were flattened and used as substrates (enamel or dentin) for the restorations. The teeth were embedded into polymethyl methacrylate and allocated into 4 groups according to the resin composite (Clearfil AP-X PLT and Clearfil Majesty Flow, Kuraray Dental) and substrate. Further, the substrates were randomly subdivided in 12 groups (N = 120, n = 10) according to the occlusal veneer minimal thickness: 0.5, 1.0, or 2.0 mm. The teeth were directly restored with a standardised procedure. Then, the specimens were loaded until fracture in a universal testing machine (Instron 6022, Instron Corp.). A 3-way and a 1-way analysis of variance were used to determine significant differences for each factor. Three-dimensional finite element analysis was carried out following the in vitro boundary conditions to assess the stress magnitude in the restoration during compressive loading. RESULTS: The fracture loads were recorded into initial load to failure (ILF) and fatal load to failure (FLF). Differences were found in material for ILF and FLF, leading to an overall equal good performance in fracture load and stress distribution for both materials, regardless of the substrate. Differences in thickness were apparent in both ILF and FLF. CONCLUSIONS: Direct conventional and flow resin composite occlusal veneers present a promising mechanical behaviour when bonded on enamel or dentin. However, caution is advised when preparing 0.5-mm minimal thickness restorations.


Subject(s)
Composite Resins , Dental Porcelain , Animals , Cattle , Dental Enamel , Dental Restoration Failure , Materials Testing
17.
Dent Traumatol ; 39(3): 191-199, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36573913

ABSTRACT

BACKGROUND/AIMS: Professional and amateur athletes might have veneer restorations. The aim of this study was to investigate the protective effect of mouthguards on veneered anterior restorations. METHODS: A nonlinear dynamic analysis was performed to simulate conditions during an impact with or without a custom-made mouthguard. Using a computer-aided design (CAD) software, a slice of a human maxilla was designed containing an upper right central incisor. The model was composed of mucosa, cortical bone, trabecular bone, periodontal ligament, dentin, enamel, and pulp tissue. The enamel was prepared (feather design), restored with an indirect veneer (1.0 mm thickness), and duplicated to simulate both conditions with or without a mouthguard (4 mm thickness). Both models were subdivided into finite elements using the computer-aided engineering (CAE) software. Frictionless contacts were used, and an impact was simulated in which a rigid sphere hit the model at 1 m s-1 . Fixation was defined at the base of the bone. The elastic modulus of the veneer was assessed by using five different restorative materials (resin composite, hybrid ceramic, zirconia-reinforced lithium silicate, lithium disilicate, and zirconia). Von Mises stress, minimal principal stress, and maximum principal stress (in MPa) were obtained and plotted for visual comparison. RESULTS: Von-Mises results showed higher stress concentrations in the veneer's cervical labial region for models without a mouthguard. Observing the quantitative results for each model, the highest compressive (709 MPa) and tensile (58 MPa) stresses occurred in the situation without a mouthguard with a zirconia veneer, while the lowest occurred in resin composite veneer with a mouthguard (8 and 5 MPa). The mouthguard was able to reduce the stresses in the tooth structure and it also reduced the risk of fracture in all conditions. CONCLUSIONS: Mouthguards were beneficial in reducing the effects of dental trauma regardless of the restorative material used to manufacture the indirect veneer, since they act by dampening the generated stresses during the trauma event. Equal impact stresses on a mouthguard will lead to higher stresses in veneered teeth with more rigid restorative materials leading to a less protective effect.


Subject(s)
Dental Materials , Zirconium , Humans , Finite Element Analysis , Composite Resins , Dental Stress Analysis , Stress, Mechanical , Materials Testing
18.
Braz. dent. sci ; 26(1): 1-18, 2023. ilus
Article in English | LILACS, BBO - Dentistry | ID: biblio-1411460

ABSTRACT

Com base no desenvolvimento da odontologia adesiva, restaurações minimamente invasivas em cerâmica são utilizadas como alternativas para restaurar um dente. As cerâmicas odontológicas são amplamente aplicadas na área odontológica principalmente devido à sua estética e resistência mecânica. Uma das propriedades da cerâmica a ser bem conhecida antes de seu uso, é a resistência ao desgaste que deve ser compatível com o comportamento de desgaste do antagonista para evitar desempenhos indesejados. Portanto, vários métodos têm sido realizados para avaliar o comportamento do desgaste dos materiais cerâmicos considerando diferentes condições presentes no complexo meio oral. Este estudo teve como objetivo compilar os métodos utilizados para investigar o desgaste das cerâmicas odontológicas e descrever os mecanismos de desgaste envolvidos nos mesmos. A obtenção e análise de dados também é abordada para discutir os resultados obtidos a partir de diferentes métodos, bem como a análise clínica do desgaste e perspectivas futuras sobre esse tema. Em conclusão, muitas metodologias estão disponíveis para medir o desgaste cerâmico. Portanto, os métodos devem ser selecionados com base na relevência clínica de cada estudo e devem seguir parâmetros previamente relatados para padronização, permitindo a comparação da literatura (AU)


Based on the development of adhesive dentistry, minimally invasive restorations in ceramics are used as alternatives to restore a tooth. Dental ceramics are largely applied in the dentistry field mainly due to their esthetic and mechanical strength. One of the ceramic properties to be well known before its use is the wear resistance that should be compatible with the antagonist wear behavior to avoid unwanted performance. Therefore, several methods have been performed to assess the ceramic materials wear behavior considering different conditions present in the complex oral medium. This study aimed to compile the methods used to investigate dental ceramics wear and to describe the wear mechanisms involved on them. Obtaining and analyzing data is also addressed to discuss the results obtained from different methods, as well as the clinical analysis of wear and future perspectives on this topic. In conclusion, many methodologies are available to measure the ceramic wear. Therefore, the methods must be selected based on the clinical significance of each study and should follow previously reported parameters for standardization, allowing literature comparison. (AU)


Subject(s)
Metal Ceramic Alloys , Dental Restoration Wear , Dental Materials , Tooth Wear , Methods
19.
Biomater Investig Dent ; 10(1): 2279066, 2023.
Article in English | MEDLINE | ID: mdl-38979098

ABSTRACT

Background: This study investigated the impact of luting procedure and restoration thicknesses on the flexural strength of CAD/CAM restorations. Traditional luting agents have been questioned in favor of pre-heated resin composites or flowable composites. Materials and Methods: 400 disc-shaped restorations (lithium disilicate [IPS e.max CAD] or resin composite [Tetric CAD, Ivoclar]) were cemented onto dentin analog discs using different procedures (n = 20): dual-curing resin cement (Panavia V5), light-curing resin cement (Panavia Veneer LC), pre-heated resin composite (Clearfil™ AP-X) with or without pre-heated restoration, and high-filled flowable composite (Clearfil Majesty™ Flow). The biaxial flexural strength was calculated. Results: There were significant effects of material, thickness, and luting procedure on flexural strength (p < 0.001). Resin composite specimens exhibited lower flexural strength (90 MPa) compared to lithium disilicate specimens (571 MPa), with thicker restorations (338 MPa) being stronger than thinner ones (323 MPa). Light-curing cement showed the highest strength (408.8 MPa)A, followed by dual-curing cement (362 MPa)B, pre-heated cement with pre-heated composite (318 MPa)C, pre-heated composite (304 MPa)C, and flowable resin composite (259 MPa)D. The light-curing cement yielded similar results to the pre-heated resin composite associated or not with the pre-heated crown for the thicker lithium disilicate specimens, whereas for the thinner lithium disilicate specimens all luting procedures performed similarly. Thin resin composite discs showed higher flexural strength when luted with light-curing cement, whereas the luting procedure had less influence for the thicker restorations. Conclusion: Luting procedures impact the flexural strength of CAD/CAM lithium disilicate and resin composite restorations. Pre-heated resin composite, with or without pre-heated restoration, can replace dual-curing cement. Nevertheless, light-curing cement is superior for resin composite and 1.5 mm lithium disilicate restorations.


Different luting procedures significantly impact the flexural strength of CAD/CAM lithium disilicate and resin composite restorations, with light-curing cement demonstrating superior performance for specific thicknesses.Pre-heated resin composites, either with or without pre-heated restorations, offer a viable alternative to conventional dual-curing cement for bonding indirect restorations, presenting potential clinical advantages.Restoration thickness plays a crucial role in the mechanical response of restorations, with thinner resin composite restorations benefiting from dual- or light-curing, while thicker ones are less sensitive to luting procedure variations.

20.
Eur J Dent ; 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36513340

ABSTRACT

OBJECTIVES: This article evaluated the effect of substrates rigidities on the post-fatigue fracture resistance of adhesively cemented simplified restorations in lithium disilicate glass ceramic. METHODS: Precrystalized computer-aided design/computer-aided manufacturing ceramic blocks were processed into disc-shaped specimens (n = 10, Ø = 10 mm), mimicking a simplified restoration at two thicknesses (0.5 and 1.0 mm). Thereafter, the discs were cemented onto different base substrates (dentin analogue [control], dentin analogue with a central core build-up of resin composite [RC], or glass ionomer cement [GIC]). The specimens were subjected to mechanical cycling in a chewing simulator (100 N, 1 × 106 cycles, 4 Hz) and then subjected to thermocycling aging (10,000 cycles, 5/37/55°C, 30 seconds). After the fatigue protocol, the specimens were loaded until failure (N) in a universal testing machine. Finite element analysis calculated the first principal stress at the center of the adhesive interface. RESULTS: The results showed that "restoration thickness," "type of substrate," and their interaction were statistically significant (one-way analysis of variance; p < 0.001). Regardless the restoration thickness a higher fracture load was observed for specimens cemented to dentin analogue. Among the base materials, RC build-up presented the highest fracture load and lower stress magnitude for both restoration thicknesses in comparison with GIC build-up. The 0.5-mm restoration showed higher stress peak and lower fracture load when submitted to the compressive test. CONCLUSION: More flexible base material reduces the fracture load and increases the stress magnitude of adhesively cemented lithium disilicate restorations regardless the ceramic thickness. Therefore, more rigid substrates are suggested to be used to prevent restoration mechanical failures.

SELECTION OF CITATIONS
SEARCH DETAIL
...