Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Type of study
Publication year range
1.
Chemosphere ; 352: 141530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401868

ABSTRACT

In view of the ongoing climate change and the ever-growing world population, novel agricultural solutions are required to ensure sustainable food supply. Microbials, natural substances, semiochemicals and double stranded RNAs (dsRNAs) are all considered potential low risk pesticides. DsRNAs function at the molecular level, targeting specific regions of specific genes of specific organisms, provided that they share a minimal sequence complementarity of approximately 20 nucleotides. Thus, dsRNAs may offer a great alternative to conventional chemicals in environmentally friendly pest control strategies. Any low-risk pesticide needs to be efficient and exhibit low toxicological potential and low environmental persistence. Having said that, in the current review, the mode of dsRNA action is explored and the parameters that need to be taken into consideration for the development of efficient dsRNA-based pesticides are highlighted. Moreover, since dsRNAs mode of action differs from those of synthetic pesticides, custom-made risk assessment schemes may be required and thus, critical issues related to the risk assessment of dsRNA pesticides are discussed here.


Subject(s)
Pesticides , Pesticides/toxicity , RNA Interference , RNA, Double-Stranded/genetics , Pest Control , Risk Assessment
2.
iScience ; 26(1): 105917, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36691616

ABSTRACT

The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.

3.
RNA Biol ; 20(1): 20-30, 2023 01.
Article in English | MEDLINE | ID: mdl-36573793

ABSTRACT

A growing body of evidence suggests that RNA interference (RNAi) plays a pivotal role in the communication between plants and pathogenic fungi, where a bi-directional trans-kingdom RNAi is established to the advantage of either the host or the pathogen. Similar mechanisms acting during plant association with non-pathogenic symbiotic microorganisms have been elusive to this date. To determine whether root endophytes can induce systemic RNAi responses to their host plants, we designed an experimental reporter-based system consisting of the root-restricted, beneficial fungal endophyte, Fusarium solani strain K (FsK) and its host Nicotiana benthamiana. Since not all fungi encode the RNAi machinery, we first needed to validate that FsK does so, by identifying its core RNAi enzymes (2 Dicer-like genes, 2 Argonautes and 4 RNA-dependent RNA polymerases) and by showing its susceptibility to in vitro RNAi upon exogenous application of double stranded RNAs (dsRNAs). Upon establishing this, we transformed FsK with a hairpin RNA (hpRNA) construct designed to target a reporter gene in its host N. benthamiana. The hpRNA was processed by FsK RNAi machinery predominantly into 21-24-nt small RNAs that triggered RNA silencing but not DNA methylation in the fungal hyphae. Importantly, when the hpRNA-expressing FsK was used to inoculate N. benthamiana, systemic RNA silencing and DNA methylation of the host reporter gene was recorded. Our data suggest that RNAi signals can be translocated by root endophytes to their hosts and can modulate gene expression during mutualism, which may be translated to beneficial phenotypes.


Subject(s)
Endophytes , RNA, Double-Stranded , RNA Interference , Endophytes/genetics , Endophytes/metabolism , Genes, Reporter , DNA Methylation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
Plant J ; 109(5): 1199-1212, 2022 03.
Article in English | MEDLINE | ID: mdl-34882879

ABSTRACT

In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.


Subject(s)
RNA, Double-Stranded , RNA-Induced Silencing Complex , Green Fluorescent Proteins/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Induced Silencing Complex/genetics
5.
Cells ; 10(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34067940

ABSTRACT

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host's RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM's mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


Subject(s)
DNA Methylation , DNA, Plant/genetics , Plant Viruses/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Plants/genetics , RNA, Plant/genetics , Viroids/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Plants/virology , RNA Interference
6.
J Exp Bot ; 72(15): 5356-5371, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34017985

ABSTRACT

In order to tackle the cumulative adverse effects of global climate change, reduced farmland, and heightened needs of an ever-increasing world population, modern agriculture is in urgent search of solutions that can ensure world food security and sustainable development. Classical crop breeding is still a powerful method to obtain crops with valued agronomical traits, but its potential is gradually being compromised by the menacing decline of genetic variation. Resorting to the epigenome as a source of variation could serve as a promising alternative. Here, we discuss current status of epigenetics-mediated crop breeding (epibreeding), highlight its advances and limitations, outline currently available methodologies, and propose novel RNA-based strategies to modify the epigenome in a gene-specific and transgene-free manner.


Subject(s)
Crops, Agricultural , Plant Breeding , Agriculture , Climate Change , Crops, Agricultural/genetics , Epigenesis, Genetic
7.
Plants (Basel) ; 9(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466487

ABSTRACT

Exogenous RNA interference (exo-RNAi) is a powerful transgene-free tool in modern crop improvement and protection platforms. In exo-RNAi approaches, double-stranded RNAs (dsRNAs) or short-interfering RNAs (siRNAs) are externally applied in plants in order to selectively trigger degradation of target mRNAs. Yet, the applied dsRNAs may also trigger unintended epigenetic alterations and result in epigenetically modified plants, an issue that has not been sufficiently addressed and which merits more careful consideration.

9.
Hortic Res ; 6: 94, 2019.
Article in English | MEDLINE | ID: mdl-31645952

ABSTRACT

Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four subsp. pepo (Pumpkin, Vegetable Marrow, Cocozelle, green Zucchini, and yellow Zucchini) morphotypes and three of the subsp. ovifera (Acorn, Crookneck, and Scallop) morphotypes. A high-depth resequencing approach was followed, using the BGISEQ-500 platform that enables the identification of rare variants, with an average of 33.5X. Approximately 94.5% of the clean reads were mapped against the reference Zucchini genome. In total, 3,823,977 high confidence single-nucleotide polymorphisms (SNPs) were identified. Within each accession, SNPs varied from 636,918 in green Zucchini to 2,656,513 in Crookneck, and were distributed homogeneously along the chromosomes. Clear differences between subspecies pepo and ovifera in genetic variation and linkage disequilibrium are highlighted. In fact, comparison between subspecies pepo and ovifera indicated 5710 genes (22.5%) with Fst > 0.80 and 1059 genes (4.1%) with Fst = 1.00 as potential candidate genes that were fixed during the independent evolution and domestication of the two subspecies. Linkage disequilibrium was greater in subsp. ovifera than in subsp. pepo, perhaps reflective of the earlier differentiation of morphotypes within subsp. ovifera. Some morphotype-specific genes have been localized. Our results offer new clues that may provide an improved understanding of the underlying genomic regions involved in the independent evolution and domestication of the two subspecies. Comparisons among SNPs unique to particular subspecies or morphotypes may provide candidate genes responsible for traits of high economic importance.

10.
Planta ; 249(2): 457-468, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30251012

ABSTRACT

MAIN CONCLUSION: In this study, we show that aberrant pre-mRNAs from non-spliced and non-polyadenylated intron-containing transgenes are channelled to the RNA silencing pathway. In plants, improperly processed transcripts are called aberrant RNAs (ab-RNAs) and are eliminated by either RNA silencing or RNA decay mechanisms. Ab-RNAs transcribed from intronless genes are copied by RNA-directed RNA polymerases (RDRs) into double-stranded RNAs which are subsequently cleaved by DICER-LIKE endonucleases into small RNAs (sRNAs). In contrast, ab-RNAs from intron-containing genes are suggested to be channelled post-splicing to exonucleolytic degradation. Yet, it is not clear how non-spliced aberrant pre-mRNAs are eliminated. We reasoned that transient expression of agroinfiltrated intron-containing transgenes in Nicotiana benthamiana would allow us to study the steady-state levels of non-spliced pre-mRNAs. SRNA deep sequencing of the agroinfiltrated transgenes revealed the presence of sRNAs mapping to the entire non-spliced pre-mRNA suggesting that RDRs (most likely RDR6) processed aberrant non-spliced pre-mRNAs. Primary and secondary sRNAs with lengths of 18-25 nucleotides (nt) were detected, with the most prominent sRNA size class of 22 nt. SRNAs also mapped to the terminator sequence, indicating that RDR substrates also comprised read-through transcripts devoid of polyadenylation tail. Importantly, the occurring sRNAs efficiently targeted cognate mRNA for degradation but failed to cleave the non-spliced pre-mRNA, corroborating the notion that sRNAs are not triggering RNA cleavage in the nucleus.


Subject(s)
Introns , RNA Precursors/metabolism , RNA, Small Interfering/metabolism , Transgenes , Blotting, Northern , Genes, Plant/genetics , Introns/genetics , RNA Precursors/genetics , RNA Splicing , RNA, Small Interfering/genetics , Sequence Analysis, RNA , Nicotiana/genetics , Nicotiana/metabolism , Transgenes/genetics
11.
Front Plant Sci ; 9: 1253, 2018.
Article in English | MEDLINE | ID: mdl-30210521

ABSTRACT

Since its discovery, RNA interference has been widely used in crop protection. Recently, transgene-free procedures that were based on exogenous application of RNA molecules having the capacity to trigger RNAi in planta have been reported. Yet, efficient delivery of such RNA molecules to plants and particularly to trees poses major technical challenges. Here, we describe simple methods for efficient delivery of hairpin RNAs (hpRNAs) and small interfering RNAs (siRNAs) to Malus domestica, Vitis vinifera, and Nicotiana benthamiana that are based on trunk injection and/or petiole absorption. The applied RNA molecules were efficiently taken up and systemically transported. In apical leaves, the RNA was already detectable 1 day post-application (dpa) and could be detected at least up to 10 dpa, depending on the method of application. Confocal microscopy revealed that the uptaken and systemically transported RNA molecules were strictly restricted to the xylem and apoplast which may illustrate why the applied hpRNAs were not processed into siRNAs by plant DICER-LIKE (DCL) endonucleases. These innovative methods may have great impact in pest management against chewing and/or xylem sap-feeding vectors and eukaryotic pathogens that reside in the xylem.

12.
Front Plant Sci ; 7: 1327, 2016.
Article in English | MEDLINE | ID: mdl-27625678

ABSTRACT

In this report, we describe a method for the delivery of small interfering RNAs (siRNAs) into plant cells. In vitro synthesized siRNAs that were designed to target the coding region of a GREEN FLUORESCENT PROTEIN (GFP) transgene were applied by various methods onto GFP-expressing transgenic Nicotiana benthamiana plants to trigger RNA silencing. In contrast to mere siRNA applications, including spraying, syringe injection, and infiltration of siRNAs that all failed to induce RNA silencing, high pressure spraying of siRNAs resulted in efficient local and systemic silencing of the GFP transgene, with comparable efficiency as was achieved with biolistic siRNA introduction. High-pressure spraying of siRNAs with sizes of 21, 22, and 24 nucleotides (nt) led to local GFP silencing. Small RNA deep sequencing revealed that no shearing of siRNAs was detectable by high-pressure spraying. Systemic silencing was basically detected upon spraying of 22 nt siRNAs. Local and systemic silencing developed faster and more extensively upon targeting the apical meristem than spraying of mature leaves.

13.
Plant J ; 87(2): 202-14, 2016 07.
Article in English | MEDLINE | ID: mdl-27121647

ABSTRACT

RNA-directed DNA methylation (RdDM) in plants has been extensively studied, but the RNA molecules guiding the RdDM machinery to their targets are still to be characterized. It is unclear whether these molecules require full complementarity with their target. In this study, we have generated Nicotiana tabacum (Nt) plants carrying an infectious tomato apical stunt viroid (TASVd) transgene (Nt-TASVd) and a non-infectious potato spindle tuber viroid (PSTVd) transgene (Nt-SB2). The two viroid sequences exhibit 81% sequence identity. Nt-TASVd and Nt-SB2 plants were genetically crossed. In the progeny plants (Nt-SB2/TASVd), deep sequencing of small RNAs (sRNAs) showed that TASVd infection was associated with the accumulation of abundant small interfering RNAs (siRNAs) that mapped along the entire TASVd but only partially matched the SB2 transgene. TASVd siRNAs efficiently targeted SB2 RNA for degradation, but no transitivity was detectable. Bisulfite sequencing in the Nt-SB2/TASVd plants revealed that the TASVd transgene was targeted for dense cis-RdDM along its entire sequence. In the same plants, the SB2 transgene was targeted for trans-RdDM. The SB2 methylation pattern, however, was weak and heterogeneous, pointing to a positive correlation between trigger-target sequence identity and RdDM efficiency. Importantly, trans-RdDM on SB2 was also detected at sites where no homologous siRNAs were detected. Our data indicate that RdDM efficiency depends on the trigger-target sequence identity, and is not restricted to siRNA occupancy. These findings support recent data suggesting that RNAs with sizes longer than 24 nt (>24-nt RNAs) trigger RdDM.


Subject(s)
DNA Methylation/physiology , RNA, Plant/physiology , Blotting, Northern , DNA Methylation/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , RNA, Plant/genetics , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/physiology
14.
Biology (Basel) ; 4(4): 697-714, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512705

ABSTRACT

In South Asia, Cotton leaf curl disease (CLCuD) is caused by a complex of phylogenetically-related begomovirus species and a specific betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB). The post-transcriptional gene silencing (PTGS) suppression activities of the transcriptional activator protein (TrAP), C4, V2 and ßC1 proteins encoded by Cotton leaf curl Kokhran virus (CLCuKoV)/CLCuMuB were assessed in Nicotiana benthamiana. A variable degree of local silencing suppression was observed for each viral protein tested, with V2 protein exhibiting the strongest suppression activity and only the C4 protein preventing the spread of systemic silencing. The CLCuKoV-encoded TrAP, C4, V2 and CLCuMuB-encoded ßC1 proteins were expressed in Escherichia coli and purified. TrAP was shown to bind various small and long nucleic acids including single-stranded (ss) and double-stranded (ds) RNA and DNA molecules. C4, V2, and ßC1 bound ssDNA and dsDNA with varying affinities. Transgenic expression of C4 under the constitutive 35S Cauliflower mosaic virus promoter and ßC1 under a dexamethasone inducible promoter induced severe developmental abnormalities in N. benthamiana. The results indicate that homologous proteins from even quite closely related begomoviruses may differ in their suppressor activity and mechanism of action. The significance of these findings is discussed.

15.
RNA Biol ; 12(3): 268-75, 2015.
Article in English | MEDLINE | ID: mdl-25826660

ABSTRACT

In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.


Subject(s)
Nicotiana/virology , Plant Cells/virology , RNA Editing , RNA Precursors/metabolism , RNA, Small Interfering/biosynthesis , RNA, Viral/metabolism , Base Sequence , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/genetics , Cytoplasm/metabolism , Cytoplasm/virology , DNA Methylation , Introns , Molecular Sequence Data , Plant Tubers/virology , Plants, Genetically Modified/virology , RNA Precursors/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Solanum tuberosum/virology , Viroids/genetics , Viroids/metabolism , Virus Replication/genetics
16.
Viruses ; 7(2): 634-46, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25674769

ABSTRACT

Viroids are non-encapsidated, non-coding, circular, single-stranded RNAs (ssRNAs). They are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast of plant cells, respectively. Viroids have a wide host range, including crop and ornamental plants, and can cause devastating diseases with significant economic losses. Thus, several viroids are world-wide, classified as quarantine pathogens and, hence, there is an urgent need for the development of robust antiviroid strategies. RNA silencing-based technologies seem to be a promising tool in this direction. Here, we review the recent advances concerning the complex interaction of viroids with the host's RNA silencing machinery, evaluate past and present antiviroid approaches, and finally suggest alternative strategies that could potentially be employed in the future in order to achieve transgenic and non-transgenic viroid-free plants.


Subject(s)
Disease Resistance , Genetic Engineering , Host-Pathogen Interactions , Plant Diseases/virology , Viroids/physiology , Gene Expression Regulation, Plant , Gene Silencing , Genetic Engineering/methods , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plants, Genetically Modified , Virus Replication
17.
RNA Biol ; 11(7): 934-41, 2014.
Article in English | MEDLINE | ID: mdl-25180820

ABSTRACT

In plants, endogenes are less prone to RNA silencing than transgenes. While both can be efficiently targeted by small RNAs for post-transcriptional gene silencing (PTGS), generally only transgene PTGS is accompanied by transitivity, RNA-directed DNA methylation (RdDM) and systemic silencing. In order to investigate whether a transgene could mimick an endogene and thus be less susceptible to RNA silencing, we generated an intron-containing, endogene-resembling GREEN FLUORESCENT PROTEIN (GFP) transgene (GFP(endo)). Upon agroinfiltration of a hairpin GFP (hpF) construct, transgenic Nicotiana benthamiana plants harboring GFP(endo) (Nb-GFP(endo)) were susceptible to local PTGS. Yet, in the local area, PTGS was not accompanied by RdDM of the GFP(endo) coding region. Importantly, hpF-agroinfiltrated Nb-GFP(endo) plants were resistant to systemic silencing. For reasons of comparison, transgenic N. benthamiana plants (Nb-GFP(cDNA)) carrying a GFP cDNA transgene (GFP(cDNA)) were included in the analysis. HpF-agroinfiltrated Nb-GFP(cDNA) plants exhibited local PTGS and RdDM. In addition, systemic silencing was established in Nb-GFP(cDNA) plants. In agreement with previous reports using grafted scions, in systemically silenced tissue, siRNAs mapping to the 3' of GFP were predominantly detectable by Northern blot analysis. Yet, in contrast to other reports, in systemically silenced leaves, PTGS was also accompanied by dense RdDM comprising the entire GFP(cDNA) coding region. Overall, our analysis indicated that cDNA transgenes are prone to systemic PTGS and RdDM, while endogene-resembling ones are resistant to RNA silencing.


Subject(s)
DNA Methylation , Nicotiana/genetics , Plant Leaves/growth & development , Transgenes , Gene Silencing , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Introns , Plant Leaves/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Nicotiana/growth & development
18.
FEBS Lett ; 587(6): 706-10, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23380068

ABSTRACT

In plants, transgenes are generally more sensitive against RNA silencing than endogenes are. In this study, we generated a transgene that structurally mimicks an endogene. It is composed of endogenous promoter, 5'-UTR, introns, 3'-UTR and terminator elements. Our data revealed that, in contrast to a conventional transgene, an endogene-resembling transgene was more stably expressed and poorly processed into small RNAs. In addition, although both constructs triggered methylation of homologous DNA sequences at similar levels, the endogene-resembling transgene exhibited significantly delayed onset of local and systemic silencing.


Subject(s)
Gene Silencing , Nicotiana/genetics , RNA, Small Interfering/genetics , Transgenes , 3' Untranslated Regions , 5' Untranslated Regions , Agrobacterium tumefaciens/genetics , DNA Methylation , Gene Transfer Techniques , Genes, Reporter , Genetic Engineering , Green Fluorescent Proteins , Introns , Molecular Mimicry , Plasmids , Promoter Regions, Genetic
19.
RNA Biol ; 10(3): 453-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23324611

ABSTRACT

RNA-directed DNA methylation (RdDM) involves sequence-specific guiding of the de novo methylation machinery to complementary genomic DNA by RNA molecules. It is still elusive whether guide RNAs bind directly to DNA or to nascent transcripts produced from it. Even the nature of the guide RNAs is not elucidated. RNA interference (RNAi) studies provided a link between RNAi and RdDM indicating that small interfering RNAs (siRNAs) trigger and guide cytosine methylation. The "siRNA hypothesis" is generally accepted. However, recent data demonstrated that RdDM is not always associated with the accumulation of corresponding siRNAs. RdDM triggers may differ from guide RNAs and further studies are needed to clarify if guide RNAs are small or long RNAs, if they are single or double stranded and if they target DNA or nascent transcript.


Subject(s)
Cytosine/metabolism , DNA Methylation , Plants/genetics , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , RNA, Small Untranslated/metabolism , Epigenesis, Genetic , Genome, Plant , Models, Molecular , Plants/metabolism
20.
Biomol Concepts ; 4(6): 557-65, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25436756

ABSTRACT

In eukaryotes, DNA methylation refers to the addition of a methyl group to the fifth atom in the six-atom ring of cytosine residues. At least in plants, DNA regions that become de novo methylated can be defined by homologous RNA molecules in a process termed RNA-directed DNA methylation (RdDM). RdDM was first discovered in viroid-infected plants. Viroids are pathogenic circular, non-coding, single-stranded RNA molecules. Members of the Pospiviroidae family replicate in the nucleus through double-stranded RNA intermediates, attracting the host RNA silencing machinery. The recruitment of this machinery results in the production of viroid-derived small RNAs (vd-sRNAs) that mediate RNA degradation and DNA methylation of cognate sequences. Here, we provide an overview of the cumulative data on the field of viroid-induced RdDM and discuss three possible scenarios concerning the mechanistic details of its establishment.


Subject(s)
DNA Methylation , Plant Diseases/virology , Plants/virology , Viroids/growth & development , DNA, Plant/genetics , Plants/genetics , RNA Interference , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...