Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904028

ABSTRACT

Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36500833

ABSTRACT

Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into ß-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (ß-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 µg/mL) in comparison to SES (106 µg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.

3.
Pharmaceutics ; 14(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214115

ABSTRACT

Dermal disorders such as psoriasis and eczema are associated with modifications in the chemical and molecular composition of the skin. Clobetasol propionate (CP), a superpotent topical glucocorticoid, is widely used for the therapeutic management of various skin conditions, owing to its strong anti-inflammatory, antipruritic, vasoconstrictive, and antiproliferative activities. Safety studies demonstrated that CP is safer for a shorter period, however, with prolonged application, it shows secondary side effects such as photosensitivity, Cushing-like syndrome, allergic contact dermatitis, osteonecrosis, hypopigmentation, steroid acne, and skin atrophy. Therefore, the US FDA (United States Food and Drug Administration) has restricted the usage of CP to not more than 15 days. Research scientists addressed its several formulations and drug delivery issues, such as low water solubility, less stability, photodegradation, and poor absorption, by incorporating them into novel nanobased delivery platforms. With the utilization of these technologies, these drawbacks of CP have been resolved to a large extent to reestablish this moiety. This article explores the physicochemical properties and mechanism of action of CP. Additionally, an attempt has been made to discover and highlight the possible features of the novel nanosystems, including nanoemulsions, nanosponges, solid lipid nanoparticles, nanostructured lipid carriers, and nanogels, reported for CP. The stability and safety concerns of CP, along with its commercial status, are also discussed.

4.
Cancer Res ; 79(18): 4585-4591, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31331911

ABSTRACT

Rhabdomyosarcoma (RMS) is an aggressive soft tissue malignancy comprised histologically of skeletal muscle lineage precursors that fail to exit the cell cycle and fuse into differentiated syncytial muscle-for which the underlying pathogenetic mechanisms remain unclear. In contrast to myogenic transcription factor signaling, the molecular machinery that orchestrates the discrete process of myoblast fusion in mammals is poorly understood and unexplored in RMS. The fusogenic machinery in Drosophila, however, is understood in much greater detail, where myoblasts are divided into two distinct pools, founder cells (FC) and fusion competent myoblasts (fcm). Fusion is heterotypic and only occurs between FCs and fcms. Here, we interrogated a comprehensive RNA-sequencing database and found that human RMS diffusely demonstrates an FC lineage gene signature, revealing that RMS is a disease of FC lineage rhabdomyoblasts. We next exploited our Drosophila RMS-related model to isolate druggable FC-specific fusogenic elements underlying RMS, which uncovered the EGFR pathway. Using RMS cells, we showed that EGFR inhibitors successfully antagonized RMS RD cells, whereas other cell lines were resistant. EGFR inhibitor-sensitive cells exhibited decreased activation of the EGFR intracellular effector Akt, whereas Akt activity remained unchanged in inhibitor-resistant cells. We then demonstrated that Akt inhibition antagonizes RMS-including RMS resistant to EGFR inhibition-and that sustained activity of the Akt1 isoform preferentially blocks rhabdomyoblast differentiation potential in cell culture and in vivo. These findings point towards selective targeting of fusion- and differentiation-arrest via Akt as a broad RMS therapeutic vulnerability. SIGNIFICANCE: EGFR and its downstream signaling mediator AKT1 play a role in the fusion and differentiation processes of rhabdomyosarcoma cells, representing a therapeutic vulnerability of rhabdomyosarcoma.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Drosophila Proteins/metabolism , Drosophila/growth & development , Myoblasts/pathology , Rhabdomyosarcoma/pathology , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , Myoblasts/drug effects , Myoblasts/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Xenograft Model Antitumor Assays
5.
Nucleic Acid Ther ; 23(6): 379-88, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24083396

ABSTRACT

Catalytic oligonucleotides, known as DNAzymes, are a new class of nucleic acid-based gene therapy that have recently been used in preclinical animal studies to treat various cancers. In this study the systemic distribution, pharmacokinetics, and safety of intravenously administered anti-MMP (matrix metalloproteinase)-9 DNAzyme (AM9D) were determined in healthy FVB and in MMTV-polyoma virus middle T (PyMT) transgenic mice bearing mammary tumors. MMP-9 is known to be involved in tumor cell development, angiogenesis, invasion, and metastasis. Sulfur-35 ((35)S) labeled ([(35)S]-AM9D) administered intravenously, without the use of carrier molecules, to healthy and mammary tumor bearing MMTV-PyMT transgenic mice distributed to all major organs. The order of percentages of [(35)S]-AM9D accumulation in different organs of healthy and MMTV-PyMT mice were blood>liver>kidney>lung>spleen>heart and mammary tumor>blood≈liver>kidney>spleen>lung>heart, respectively. The amount of AM9D accumulated in mammary tumors 2 hours post injection was 0.6% and 0.2% higher than in either blood or liver, respectively, and its rate of initial clearance from mammary tissue was at least 50% slower than the other organs. Approximately 43% of the delivered dosage of [(35)S]-AM9D was cleared from the system via feces and urine over a period of 72 hours. No evidence of acute or chronic cytotoxicity, local or widespread, associated with AM9D treatment (up to 75 mg AM9D /kg of body weight) was observed in the organs examined. These data suggest that DNAzyme in general and AM9D in particular can be used systemically as a therapeutic agent to treat patients with breast cancer or other metastatic and surgically inaccessible tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , DNA, Catalytic/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Matrix Metalloproteinase 9/metabolism , Administration, Intravenous , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , DNA, Catalytic/pharmacokinetics , DNA, Catalytic/toxicity , Drug Screening Assays, Antitumor , Female , Mammary Neoplasms, Experimental/metabolism , Mammary Tumor Virus, Mouse , Mice , Mice, Transgenic , Polyomavirus , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...