Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 597(8): 1086-1097, 2023 04.
Article in English | MEDLINE | ID: mdl-36650979

ABSTRACT

Invasive and metastatic tumor cells show an increase in migration and invasion, making the processes contributing to these phenotypes potential therapeutic targets. Lipocalin 2 (LCN2; also known as neutrophil gelatinase-associated lipocalin) is a putative therapeutic target in multiple tumor types and promotes invasion and migration, although the mechanisms underlying these phenotypes are unclear. The data in this report demonstrate that LCN2 promotes actin polymerization, invasion, and migration by inhibiting actin glutathionylation. LCN2 inhibits actin glutathionylation by decreasing the levels of reactive oxygen species (ROS) and by reducing intracellular iron levels. Inhibiting LCN2 function leads to increased actin glutathionylation, decreased migration, and decreased invasion. These results suggest that LCN2 is a potential therapeutic target in invasive tumors.


Subject(s)
Actins , Neoplasms , Humans , Lipocalin-2 , Lipocalins , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism
2.
FEBS Lett ; 595(21): 2675-2690, 2021 11.
Article in English | MEDLINE | ID: mdl-34626438

ABSTRACT

14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.


Subject(s)
14-3-3 Proteins , Centrosome , Desmosomes , Mitosis , HCT116 Cells , Humans , Spindle Apparatus
SELECTION OF CITATIONS
SEARCH DETAIL
...