Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 272: 120052, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36965861

ABSTRACT

Heschl's gyrus (HG), which includes primary auditory cortex, is highly variable in its shape (i.e. gyrification patterns), between hemispheres and across individuals. Differences in HG shape have been observed in the context of phonetic learning skill and expertise, and of professional musicianship, among others. Two of the most common configurations of HG include single HG, where a single transverse temporal gyrus is present, and common stem duplications (CSD), where a sulcus intermedius (SI) arises from the lateral aspect of HG. Here we describe a new toolbox, called 'Multivariate Concavity Amplitude Index' (MCAI), which automatically assesses the shape of HG. MCAI works on the output of TASH, our first toolbox which automatically segments HG, and computes continuous indices of concavity, which arise when sulci are present, along the outer perimeter of an inflated representation of HG, in a directional manner. Thus, MCAI provides a multivariate measure of shape, which is reproducible and sensitive to small variations in shape. We applied MCAI to structural magnetic resonance imaging (MRI) data of N=181 participants, including professional and amateur musicians and from non-musicians. Former studies have shown large variations in HG shape in the former groups. We validated MCAI by showing high correlations between the dominant (i.e. highest) lateral concavity values and continuous visual assessments of the degree of lateral gyrification of the first gyrus. As an application of MCAI, we also replicated previous visually obtained findings showing a higher likelihood of bilateral CSDs in musicians. MCAI opens a wide range of applications in evaluating HG shape in the context of individual differences, expertise, disorder and genetics.


Subject(s)
Auditory Cortex , Music , Humans , Auditory Cortex/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Learning
2.
Sci Rep ; 10(1): 3887, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127593

ABSTRACT

Auditory cortex volume and shape differences have been observed in the context of phonetic learning, musicianship and dyslexia. Heschl's gyrus, which includes primary auditory cortex, displays large anatomical variability across individuals and hemispheres. Given this variability, manual labelling is the gold standard for segmenting HG, but is time consuming and error prone. Our novel toolbox, called 'Toolbox for the Automated Segmentation of HG' or TASH, automatically segments HG in brain structural MRI data, and extracts measures including its volume, surface area and cortical thickness. TASH builds upon FreeSurfer, which provides an initial segmentation of auditory regions, and implements further steps to perform finer auditory cortex delineation. We validate TASH by showing significant relationships between HG volumes obtained using manual labelling and using TASH, in three independent datasets acquired on different scanners and field strengths, and by showing good qualitative segmentation. We also present two applications of TASH, demonstrating replication and extension of previously published findings of relationships between HG volumes and (a) phonetic learning, and (b) musicianship. In sum, TASH effectively segments HG in a fully automated and reproducible manner, opening up a wide range of applications in the domains of expertise, disease, genetics and brain plasticity.


Subject(s)
Auditory Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adult , Auditory Cortex/anatomy & histology , Automation , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
3.
Sci Rep ; 10(1): 2660, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060334

ABSTRACT

Current treatments for Alzheimer's disease are only symptomatic and limited to reduce the progression rate of the mental deterioration. Mild Cognitive Impairment, a transitional stage in which the patient is not cognitively normal but do not meet the criteria for specific dementia, is associated with high risk for development of Alzheimer's disease. Thus, non-invasive techniques to predict the individual's risk to develop Alzheimer's disease can be very helpful, considering the possibility of early treatment. Diffusion Tensor Imaging, as an indicator of cerebral white matter integrity, may detect and track earlier evidence of white matter abnormalities in patients developing Alzheimer's disease. Here we performed a voxel-based analysis of fractional anisotropy in three classes of subjects: Alzheimer's disease patients, Mild Cognitive Impairment patients, and healthy controls. We performed Support Vector Machine classification between the three groups, using Fisher Score feature selection and Leave-one-out cross-validation. Bilateral intersection of hippocampal cingulum and parahippocampal gyrus (referred as parahippocampal cingulum) is the region that best discriminates Alzheimer's disease fractional anisotropy values, resulting in an accuracy of 93% for discriminating between Alzheimer's disease and controls, and 90% between Alzheimer's disease and Mild Cognitive Impairment. These results suggest that pattern classification of Diffusion Tensor Imaging can help diagnosis of Alzheimer's disease, specially when focusing on the parahippocampal cingulum.


Subject(s)
Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Anisotropy , Case-Control Studies , Female , Humans , Male , Organ Specificity , Support Vector Machine
4.
Brain Imaging Behav ; 14(3): 641-652, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30519999

ABSTRACT

This proposed novel method consists of three levels of analyses of diffusion tensor imaging data: 1) voxel level analysis of fractional anisotropy of white matter tracks, 2) connection level analysis, based on fiber tracks between specific brain regions, and 3) network level analysis, based connections among multiple brain regions. Machine-learning techniques of (Fisher score) feature selection, (Support Vector Machine) pattern classification, and (Leave-one-out) cross-validation are performed, for recognition of the neural connectivity patterns for diagnostic purposes. For validation proposes, this multilevel approach achieved an average classification accuracy of 90% between Alzheimer's disease and healthy controls, 83% between Alzheimer's disease and mild cognitive impairment, and 83% between mild cognitive impairment and healthy controls. The results indicate that the multilevel diffusion tensor imaging approach used in this analysis is a potential diagnostic tool for clinical evaluations of brain disorders. The presented pipeline is now available as a tool for scientifically applications in a broad range of studies from both clinical and behavioral spectrum, which includes studies about autism, dyslexia, schizophrenia, dementia, motor body performance, among others.


Subject(s)
Alzheimer Disease , White Matter , Alzheimer Disease/diagnostic imaging , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , White Matter/diagnostic imaging
5.
J Alzheimers Dis ; 31 Suppl 3: S211-20, 2012.
Article in English | MEDLINE | ID: mdl-22451316

ABSTRACT

Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.


Subject(s)
Alzheimer Disease/rehabilitation , Brain-Computer Interfaces , Brain/physiopathology , Conditioning, Classical , Alzheimer Disease/psychology , Artificial Intelligence , Communication , Communication Aids for Disabled , Electroencephalography , Emotions , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...