Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(15): 7896-7906, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578930

ABSTRACT

Polar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear. It has been suggested that surface-induced molecular water structuring is responsible for the hydration repulsion, but a quantitative proof of this water-structuring hypothesis is missing. To gain an understanding of the mechanism causing hydration repulsion, we perform molecular simulations of different planar polar surfaces in water. Our simulated hydration forces between phospholipid bilayers agree perfectly with experiments, validating the simulation model and methods. For the comparison with theory, it is important to split the simulated total surface interaction force into a direct contribution from surface-surface molecular interactions and an indirect water-mediated contribution. We find the indirect hydration force and the structural water-ordering profiles from the simulations to be in perfect agreement with the predictions from theoretical models that account for the surface-induced water ordering, which strongly supports the water-structuring hypothesis for the hydration force. However, the comparison between the simulations for polar surfaces with different headgroup architectures reveals significantly different decay lengths of the indirect water-mediated hydration-force, which for laterally homogeneous water structuring would imply different bulk-water properties. We conclude that laterally inhomogeneous water ordering, induced by laterally inhomogeneous surface structures, shapes the hydration repulsion between polar surfaces in a decisive manner. Thus, the indirect water-mediated part of the hydration repulsion is caused by surface-induced water structuring but is surface-specific and thus nonuniversal.

2.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37502911

ABSTRACT

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HttEx1) fragment, whose polyglutamine (polyQ) segment is expanded. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HttEx1 fibrils has remained unknown, limiting diagnostic and treatment efforts. We present and analyze the structure of fibrils formed by polyQ peptides and polyQ-expanded HttEx1. Atomic-resolution perspectives are enabled by an integrative analysis and unrestrained all-atom molecular dynamics (MD) simulations incorporating experimental data from electron microscopy (EM), solid-state NMR, and other techniques. Visualizing the HttEx1 subdomains in atomic detail helps explaining the biological properties of these protein aggregates, as well as paves the way for targeting them for detection and degradation.

3.
J Phys Chem B ; 126(49): 10295-10304, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36473702

ABSTRACT

When described by a one-dimensional reaction coordinate, pair-reaction rates in a solvent depend, in addition to the potential barrier height and the friction coefficient, on the potential shape, the effective mass, and the friction relaxation spectrum, but a rate theory that accurately accounts for all of these effects does not exist. After a review of classical reaction-rate theories, we show how to extract all parameters of the generalized Langevin equation (GLE) and, in particular, the friction memory function from molecular dynamics (MD) simulations of two prototypical pair reactions in water, the dissociation of NaCl and of two methane molecules. The memory exhibits multiple time scales and, for NaCl, pronounced oscillatory components. Simulations of the GLE by Markovian embedding techniques accurately reproduce the pair-reaction kinetics from MD simulations without any fitting parameters, which confirms the accuracy of the approximative form of the GLE and of the parameter extraction techniques. By modification of the GLE parameters, we investigate the relative importance of memory, mass, and potential shape effects. Neglect of memory slows down NaCl and methane dissociation by roughly a factor of 2; neglect of mass accelerates reactions by a similar factor, and the harmonic approximation of the potential shape gives rise to slight acceleration. This partial error cancellation explains why Kramers' theory, which neglects memory effects and treats the potential shape in harmonic approximation, describes reaction rates better than more sophisticated theories. In essence, all three effects, friction memory, inertia, and the potential shape nonharmonicity, are important to quantitatively describe pair-reaction kinetics in water.


Subject(s)
Sodium Chloride , Water , Kinetics , Molecular Dynamics Simulation , Methane
4.
J Chem Phys ; 157(17): 174116, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347713

ABSTRACT

A stochastic theory is developed to predict the spectral signature of proton-transfer processes and is applied to infrared spectra computed from ab initio molecular-dynamics simulations of a single H5O2 + cation. By constraining the oxygen atoms to a fixed distance, this system serves as a tunable model for general proton-transfer processes with variable barrier height. Three spectral contributions at distinct frequencies are identified and analytically predicted: the quasi-harmonic motion around the most probable configuration, amenable to normal-mode analysis, the contribution due to transfer paths when the proton moves over the barrier, and a shoulder for low frequencies stemming from the stochastic transfer-waiting-time distribution; the latter two contributions are not captured by normal-mode analysis but exclusively reported on the proton-transfer kinetics. In accordance with reaction rate theory, the transfer-waiting-contribution frequency depends inversely exponentially on the barrier height, whereas the transfer-path-contribution frequency is rather insensitive to the barrier height.

5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34326249

ABSTRACT

We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide [Formula: see text] for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote-Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.


Subject(s)
Markov Chains , Molecular Dynamics Simulation , Protein Folding , Proteins/chemistry , Models, Chemical , Protein Conformation , Thermodynamics
6.
Phys Rev E ; 101(3-1): 032408, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289977

ABSTRACT

Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by the non-Markovian version of the Langevin equation that includes an arbitrary memory function. When averaged over cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterized by Gaussian velocity distributions. Accordingly, the data are described by a linear memory model which includes different random walk models that were previously used to account for various aspects of cell motility such as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memory function is extracted from the trajectory data without restrictions or assumptions, thus making our approach truly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayed single-exponential negative friction, which clearly distinguishes cell motion from the simple persistent random walk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extracted memory function we formulate a generalized exactly solvable cell migration model which indicates that negative friction generates cell persistence over long timescales. The nonequilibrium character of cell motion is investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model that involves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.


Subject(s)
Cell Movement , Models, Biological , Cell Line, Tumor , Humans , Kinetics , Single-Cell Analysis
7.
J Phys Chem B ; 123(38): 8123-8130, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31480846

ABSTRACT

We show by molecular dynamics simulations that the friction constant of a freely diffusing methane molecule in explicit water increases with the methane mass by a factor of up to 1.8 in the infinite mass limit compared to the massless limit. This effect is rationalized by the mass dependence of the friction memory kernel which is extracted from the simulation data by mapping on the generalized Langevin equation. On the basis of the mass-dependent memory kernels, we obtain perfect agreement between simulation results and analytic predictions for both mean-square displacements and force autocorrelation functions. The memory kernels, which account for methane interactions with the solvent, decay significantly slower with increasing methane mass. The mass-dependent friction is correlated with the mean escape time of water molecules from the first hydration shell, which increases monotonically with the methane mass by a factor of 3 over the mass range considered. Our proposed scaling expression allows the direct prediction of diffusion constants for stable methane isotopes, which will help to better understand bacterial methane isotope fractionation. Our scaling analysis suggests that mass-dependent friction will be relevant also for larger solutes in sufficiently viscous solvents.

8.
Phys Rev E ; 100(1-1): 012126, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499907

ABSTRACT

The friction coefficient of molecular solutes depends on the solute, on the solvent, and on the solute-solvent interactions, but is typically assumed to not depend on an externally applied force that acts on the solute. In this paper we compute the friction memory function from molecular dynamics simulations and show that the friction coefficients of harmonically confined methane, water, Na^{+}, an artificial Na^{-} ion, and glycerol in water in fact increase with confinement strength. The results show that the friction increase with confinement strength is a fundamental effect that occurs for hydrophobic, hydrophilic, as well as charged molecules. We demonstrate that a parameter-free extraction of the running integral over the memory function yields the most robust results when compared to methods based on parametrization or Fourier transforms. In all systems, this friction increase is accompanied by a slowdown of the solvent dynamics in the first hydration shell of the solutes. By simulations of a confined glycerol molecule in water-glycerol mixtures, we furthermore demonstrate that the friction dependence on the confining potential is magnified in more viscous solvents, which suggests that this effect plays an important role for larger molecules in highly viscous solutions like polymer melts, in line with dynamic scaling arguments.

9.
Proc Natl Acad Sci U S A ; 115(20): 5169-5174, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29712838

ABSTRACT

The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins.

10.
Nat Commun ; 9(1): 311, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358659

ABSTRACT

Infrared continuum bands that extend over a broad frequency range are a key spectral signature of protonated water clusters. They are observed for many membrane proteins that contain internal water molecules, but their microscopic mechanism has remained unclear. Here we compute infrared spectra for protonated and unprotonated water chains, discs, and droplets from ab initio molecular dynamics simulations. The continuum bands of the protonated clusters exhibit significant anisotropy for chains and discs, with increased absorption along the direction of maximal cluster extension. We show that the continuum band arises from the nuclei motion near the excess charge, with a long-ranged amplification due to the electronic polarizability. Our experimental, polarization-resolved light-dark difference spectrum of the light-driven proton pump bacteriorhodopsin exhibits a pronounced dichroic continuum band. Our results suggest that the protonated water cluster responsible for the continuum band of bacteriorhodopsin is oriented perpendicularly to the membrane normal.

11.
J Chem Phys ; 148(1): 014903, 2018 Jan 07.
Article in English | MEDLINE | ID: mdl-29306292

ABSTRACT

We study the mean first-passage time τMFP for the barrier crossing of a single massive particle with non-Markovian memory by Langevin simulations in one dimension. In the Markovian limit of short memory time τΓ, the expected Kramers turnover between the overdamped (high-friction) and the inertial (low-friction) limits is recovered. Compared to the Markovian case, we find barrier crossing to be accelerated for intermediate memory time, while for long memory time, barrier crossing is slowed down and τMFP increases with τΓ as a power law τMFP∼τΓ2. Both effects are derived from an asymptotic propagator analysis: while barrier crossing acceleration at intermediate memory can be understood as an effective particle mass reduction, slowing down for long memory is caused by the slow kinetics of energy diffusion. A simple and globally accurate heuristic formula for τMFP in terms of all relevant time scales of the system is presented and used to establish a scaling diagram featuring the Markovian overdamped and the Markovian inertial regimes, as well as the non-Markovian intermediate memory time regime where barrier crossing is accelerated and the non-Markovian long memory time regime where barrier crossing is slowed down.

12.
J Chem Inf Model ; 55(3): 495-500, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25648076

ABSTRACT

Involved in numerous key biological functions, protein helix-helix interactions follow a well-defined intermolecular recognition pattern. The characteristic structure of the α-helical coiled-coil allows for the specific randomization of clearly defined interaction partners within heteromeric systems. In this work, a rationally designed heterodimeric coiled-coil was used to investigate potential factors influencing the sequence selectivity in interhelical interactions.


Subject(s)
Bacteriophages/metabolism , Peptide Library , Proteins/chemistry , Circular Dichroism , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Protein Multimerization , Proteins/metabolism , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...