Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol Reg Stud Reports ; 48: 100985, 2024 02.
Article in English | MEDLINE | ID: mdl-38316510

ABSTRACT

Hookworms are the most common intestinal nematode parasites of dogs in Australia. The control of these parasites relies mostly on regular deworming with anthelmintics, with pyrantel-based dewormers being a relatively low cost and readily-available option for dog owners. Pyrantel resistance in canine hookworms in Australia was first reported in 2007, however pyrantel-based dewormers are still used against hookworm infection in dogs across Australia. The present study was conducted to evaluate the efficacy of pyrantel against hookworms infecting dogs housed in a shelter facility in Southeast Queensland which receives rescued or surrendered animals from greyhound rescue centres and dog shelters across this region. A total of 10 dogs were examined using the faecal egg count reduction test (FECRT). There was no reduction in FEC in any of the dogs following pyrantel treatment, with drug efficacies ranging from -0.9% to -283.3%. Given that these dogs originated from various sites across Southeast Queensland, the present study suggests that pyrantel resistance is widespread in this region, and hence this anthelmintic may not be a useful option for treatment of hookworm infections in dogs.


Subject(s)
Anthelmintics , Dog Diseases , Hookworm Infections , Intestinal Diseases, Parasitic , Dogs , Animals , Pyrantel/pharmacology , Pyrantel/therapeutic use , Ancylostomatoidea , Queensland/epidemiology , Parasite Egg Count/veterinary , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Hookworm Infections/drug therapy , Hookworm Infections/epidemiology , Hookworm Infections/veterinary , Intestinal Diseases, Parasitic/veterinary , Australia/epidemiology , Dog Diseases/drug therapy , Dog Diseases/parasitology
2.
J Phys Condens Matter ; 35(36)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37216948

ABSTRACT

Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2'-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV-Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit.

3.
J Phys Condens Matter ; 34(29)2022 May 19.
Article in English | MEDLINE | ID: mdl-35508146

ABSTRACT

Compact domain features have been observed in spin crossover [Fe{H2B(pz)2}2(bipy)] molecular thin film systems via soft x-ray absorption spectroscopy and photoemission electron microscopy. The domains are in a mixed spin state that on average corresponds to roughly 2/3 the high spin occupation of the pure high spin state. Monte Carlo simulations support the presence of intermolecular interactions that can be described in terms of an Ising model in which interactions beyond nearest-neighbors cannot be neglected. This suggests the presence of short-range order to permit interactions between molecules beyond nearest neighbor that contribute to the formation of largely high spin state domains structure. The formation of a spin state domain structure appears to be the result of extensive cooperative effects.

4.
Chem Commun (Camb) ; 58(5): 661-664, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34914817

ABSTRACT

The [Co(SQ)2(4-CN-py)2] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ)2(4-CN-py)2].

6.
J Phys Chem Lett ; 11(19): 8231-8237, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32878433

ABSTRACT

Voltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2'-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high-spin and low-spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only nonvolatile voltage control of the spin state ("write") but also current sensing of the molecular spin state ("read"). Monte Carlo Ising model simulations of the high-spin state occupancy, extracted from X-ray absorption spectroscopy, indicate that the energy difference between the low-spin and high-spin state is modified by 110 meV. Transport measurements demonstrate that four terminal voltage-controlled devices can be realized using this system.

7.
J Neurotrauma ; 35(4): 639-651, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29149810

ABSTRACT

Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.


Subject(s)
Acute-Phase Reaction/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries/pathology , Extracellular Vesicles/pathology , Acute-Phase Reaction/blood , Animals , Brain Injuries/blood , Brain Injuries, Traumatic/blood , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...