Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1141, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854765

ABSTRACT

Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naïve animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.


Subject(s)
COVID-19 Vaccines , Animals , Humans , Mice , Deubiquitinating Enzymes , Papain , Peptide Hydrolases , Vaccines, Attenuated , Vaccine Development
2.
Vaccines (Basel) ; 9(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34960238

ABSTRACT

The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.

3.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33909009

ABSTRACT

Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


Subject(s)
Adenoviridae/immunology , Aging/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Body Temperature , Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , Dose-Response Relationship, Immunologic , Female , Immunity, Humoral , Kinetics , Lung/pathology , Lung/virology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Vaccination , Viral Load
4.
NPJ Vaccines ; 6(1): 39, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741993

ABSTRACT

Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy, and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1 × 109 and 1 × 1010 VP elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers that was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these preclinical data confirm efficacy of a one-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.

5.
Nat Commun ; 12(1): 324, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436573

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Capsid/immunology , Protein Binding/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
6.
NPJ Vaccines ; 5: 91, 2020.
Article in English | MEDLINE | ID: mdl-33083026

ABSTRACT

Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g., prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S2) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild-type signal peptide was best suited for the correct cleavage needed for a natively folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild-type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-γ. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).

7.
J Gen Virol ; 101(9): 925-940, 2020 09.
Article in English | MEDLINE | ID: mdl-32568027

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.


Subject(s)
Betacoronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication/physiology , Adaptation, Biological , Animals , Antibodies, Viral/immunology , Betacoronavirus/genetics , Cell Line/ultrastructure , Cell Line/virology , Chlorocebus aethiops , Computational Biology , Conserved Sequence , Cross Reactions , Cytopathogenic Effect, Viral , High-Throughput Nucleotide Sequencing , Humans , Immune Sera/immunology , Kinetics , Mice , Microscopy, Electron , Microscopy, Fluorescence , RNA, Viral/isolation & purification , Rabbits , SARS-CoV-2 , Vero Cells/ultrastructure , Vero Cells/virology
8.
PLoS Pathog ; 13(5): e1006372, 2017 May.
Article in English | MEDLINE | ID: mdl-28542609

ABSTRACT

The recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs), including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV) libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors that could protect against a diverse range of viruses by providing UbVs via mRNA or protein delivery technologies or through transgenic techniques.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Enzyme Inhibitors/pharmacology , Hemorrhagic Fever Virus, Crimean-Congo/drug effects , Hemorrhagic Fever, Crimean/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Ubiquitin/metabolism , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Coronavirus Infections/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Hemorrhagic Fever Virus, Crimean-Congo/enzymology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/genetics , Ubiquitination/drug effects , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
9.
PLoS Pathog ; 12(10): e1005982, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27783669

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/ß) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a suppressing the PKR-dependent stress response pathway, probably by sequestering dsRNA. MERS-CoV p4a represents the first coronavirus stress response antagonist described.


Subject(s)
Coronavirus Infections/metabolism , Immune Evasion/immunology , Viral Regulatory and Accessory Proteins/metabolism , eIF-2 Kinase/metabolism , Blotting, Western , Cell Line , Coronavirus Infections/immunology , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockout Techniques , Humans , Inclusion Bodies, Viral/immunology , Inclusion Bodies, Viral/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Polymerase Chain Reaction , Viral Regulatory and Accessory Proteins/immunology , eIF-2 Kinase/immunology
10.
J Gen Virol ; 96(Pt 4): 804-814, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25516543

ABSTRACT

Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines.


Subject(s)
DNA/genetics , Yellow Fever Vaccine/genetics , Yellow Fever Vaccine/immunology , Yellow Fever/immunology , Yellow Fever/virology , Yellow fever virus/genetics , Yellow fever virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cricetinae , DNA/immunology , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic/genetics , Mice, Transgenic/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication/genetics , Virus Replication/immunology
11.
J Biol Chem ; 289(50): 34667-82, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25320088

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PL(pro)) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PL(pro) was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PL(pro) domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PL(pro), we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PL(pro) to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PL(pro) DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PL(pro) domain was found to suppress IFN-ß promoter activation, PL(pro) variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PL(pro), and not its proteolytic activity per se, in the inhibition of IFN-ß promoter activity. The ability to decouple the DUB activity of PL(pro) from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PL(pro) as a viral DUB during MERS-CoV infection.


Subject(s)
Immune Tolerance , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/enzymology , Papain/chemistry , Papain/metabolism , Ubiquitin/metabolism , Ubiquitination , Amino Acid Motifs , Catalytic Domain , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Mutagenesis , Mutation , Papain/genetics , Ubiquitin/chemistry
12.
Vaccine ; 29(6): 1248-57, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21145373

ABSTRACT

Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa.


Subject(s)
Drug Carriers , Genetic Vectors , Lassa Fever/prevention & control , Viral Envelope Proteins/immunology , Yellow Fever Vaccine/genetics , Yellow Fever Vaccine/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Guinea Pigs , Mice , Mice, Inbred CBA , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics
13.
J Virol ; 84(21): 11395-406, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20739539

ABSTRACT

Cells and mice infected with arthropod-borne flaviviruses produce a small subgenomic RNA that is colinear with the distal part of the viral 3'-untranslated region (UTR). This small subgenomic flavivirus RNA (sfRNA) results from the incomplete degradation of the viral genome by the host 5'-3' exonuclease XRN1. Production of the sfRNA is important for the pathogenicity of the virus. This study not only presents a detailed description of the yellow fever virus (YFV) sfRNA but, more importantly, describes for the first time the molecular characteristics of the stalling site for XRN1 in the flavivirus genome. Similar to the case for West Nile virus, the YFV sfRNA was produced by XRN1. However, in contrast to the case for other arthropod-borne flaviviruses, not one but two sfRNAs were detected in YFV-infected mammalian cells. The smaller of these two sfRNAs was not observed in infected mosquito cells. The larger sfRNA could also be produced in vitro by incubation with purified XRN1. These two YFV sfRNAs formed a 5'-nested set. The 5' ends of the YFV sfRNAs were found to be just upstream of the previously predicted RNA pseudoknot PSK3. RNA structure probing and mutagenesis studies provided strong evidence that this pseudoknot structure was formed and served as the molecular signal to stall XRN1. The sequence involved in PSK3 formation was cloned into the Sinrep5 expression vector and shown to direct the production of an sfRNA-like RNA. These results underscore the importance of the RNA pseudoknot in stalling XRN1 and also demonstrate that it is the sole viral requirement for sfRNA production.


Subject(s)
DNA-Binding Proteins/genetics , Exoribonucleases/genetics , RNA, Viral/biosynthesis , Yellow fever virus/genetics , Animals , Culicidae , Genome, Viral , Humans , Mice , Molecular Probes , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Yellow fever virus/pathogenicity
14.
J Gen Virol ; 88(Pt 6): 1738-1747, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17485534

ABSTRACT

The pentanucleotide (PN) sequence 5'-CACAG-3' at the top of the 3' stem-loop structure of the flavivirus genome is well conserved in the arthropod-borne viruses but is more variable in flaviviruses with no known vector. In this study, the sequence requirements of the PN motif for yellow fever virus 17D (YFV) replication were determined. In general, individual mutations at either the second, third or fourth positions were tolerated and resulted in replication-competent virus. Mutations at the fifth position were lethal. Base pairing of the nucleotide at the first position of the PN motif and a nucleotide four positions downstream of the PN (ninth position) was a major determinant for replication. Despite the fact that the majority of the PN mutants were able to replicate efficiently, they were outcompeted by parental YFV-17D virus following repeated passages in double-infected cell cultures. Surprisingly, some of the virus mutants at the first and/or the ninth position that maintained the possibility of forming a base pair were found to have a similar fitness to YFV-17D under these conditions. Overall, these experiments suggest that YFV is less dependent on sequence conservation of the PN motif for replication in animal cells than West Nile virus. However, in animal cell culture, YFV has a preference for the wt CACAG PN sequence. The molecular mechanisms behind this preference remain to be elucidated.


Subject(s)
3' Untranslated Regions , Conserved Sequence , Genome, Viral , RNA, Viral/genetics , Virus Replication , Yellow fever virus/genetics , Yellow fever virus/physiology , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Cricetinae , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA, Viral/physiology , West Nile virus/genetics
15.
J Gen Virol ; 85(Pt 7): 1859-1866, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15218170

ABSTRACT

Quasispecies shifts are essential for the development of persistent hepatitis C virus (HCV) infection. Naturally occurring sequence variations in the 5' non-translated region (NTR) of the virus could lead to changes in protein expression levels, reflecting selective forces on the virus. The extreme 5' end of the virus' genome, containing signals essential for replication, is followed by an internal ribosomal entry site (IRES) essential for protein translation as well as replication. The 5' NTR is highly conserved and has a complex RNA secondary structure consisting of several stem-loops. This report analyses the quasispecies distribution of the 5' NTR of an HCV genotype 1b clinical isolate and found a number of sequences differing from the consensus sequence. The consensus sequence, as well as a major variant located in stem-loop IIIa of the IRES, was investigated using self-replicating HCV RNA molecules in human hepatoma cells. The stem-loop IIIa mutation, which is predicted to disrupt the stem structure, showed slightly lower translation efficiency but was severely impaired in the colony formation of selectable HCV replicons. Interestingly, during selection of colonies supporting autonomous replication, mutations emerged that restored the base pairing in the stem-loop. Recloning of these altered IRESs confirmed that these second site revertants were more efficient in colony formation. In conclusion, naturally occurring variants in the HCV 5' NTR can lead to changes in their replication ability. Furthermore, IRES quasispecies evolution was observed in vitro under the selective pressure of the replicon system.


Subject(s)
5' Untranslated Regions/genetics , Hepacivirus/genetics , Replicon/genetics , Aged , Base Sequence , DNA Primers , Genetic Variation , Genotype , Humans , Male , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Plasmids/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Virus Replication/genetics
16.
J Gen Virol ; 84(Pt 7): 1761-1769, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12810870

ABSTRACT

Hepatitis C virus (HCV) is classified in the genus Hepacivirus of the family Flaviviridae, whose members have a single-stranded RNA genome of positive polarity, which encodes a single polyprotein. Within this family, HCV is closely related to viruses of the genus Pestivirus, which includes classical swine fever virus (CSFV). Translation of the hepaci- and pestiviral polyprotein is initiated by internal entry of ribosomes, promoted by the 5'NTR. The secondary and tertiary RNA structures of the HCV and pestivirus 5'NTRs are well conserved, despite the fact that their sequences differ significantly from one another. By analogy with other positive-stranded RNA viruses, the 5'NTR of HCV is likely to contain cis-acting determinants for replication as well as the determinants for translation. Studies on both signals could be complicated, as these signals might overlap. In this study, this problem was addressed by constructing chimeric HCV/CSFV 5'NTRs. A two-step analysis of these 5'NTRs was performed: (a) in a translation assay, which provided the possibility to study translation independently of the possible effects on replication; and (b) in a replication assay, in which were studied only the chimeric 5'NTRs for which IRES-dependent translation was demonstrated. An overlap was observed between HCV RNA elements involved in these processes. Exchange of domain II had a minor effect on the translation efficiency of the chimeric 5'NTRs, while replication of subgenomic replicons with these chimeric 5'NTRs was abolished. Exchange of domain III subdomains severely decreased translation activity, while replication was maintained.


Subject(s)
5' Untranslated Regions/genetics , Classical Swine Fever Virus/genetics , Hepacivirus/genetics , RNA, Viral/biosynthesis , Recombination, Genetic , Regulatory Sequences, Ribonucleic Acid/genetics , Ribosomes/metabolism , Base Sequence , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Viral/genetics , Ribosomes/chemistry , Tumor Cells, Cultured , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...