Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(35): 5974-5984, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36017944

ABSTRACT

Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (∼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, ß-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.


Subject(s)
Sulfates , Sulfur , Aerosols/chemistry , Density Functional Theory , Oxidation-Reduction , Sulfates/chemistry
2.
J Phys Chem B ; 121(46): 10574-10582, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29087711

ABSTRACT

Ultrafast picosecond time scale two-dimensional infrared (2D-IR) spectroscopy of a new water-soluble transition metal complex acting as a vibrational probe shows that over a range of concentration and poly(ethylene glycol) (PEG) molecular mass (2000, 8000, and 20000 Da) the time scale of the sensed hydration dynamics differs negligibly from bulk water (D2O). PEG is well-known to establish a highly stable hydration shell because the spacing between adjacent ethereal oxygens nearly matches water's hydrogen-bonding network. Although these first-shell water molecules are likely significantly retarded, they present an interface to subsequent hydration shells and thus diminish the largely entropic perturbation to water's orientational dynamics. In addition to the longer PEGs, a series of concentration-dependent 2D-IR measurements using aqueous PEG-400 show a pronounced hydration slowdown in the vicinity of the critical overlap concentration (c*). Comparison between these dynamical results and previously reported steady-state infrared spectroscopy of aqueous PEG-1000 solutions reveals a strikingly identical dependence on number of water molecules per ethylene oxide monomer, scaled according to the critical overlap concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...