Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 516(7529): 56-61, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471879

ABSTRACT

Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.


Subject(s)
Gene Expression Regulation, Developmental , Pluripotent Stem Cells/physiology , Animals , Cell Death , Cell Division , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Gene Expression Profiling , Mice , MicroRNAs/metabolism , Pluripotent Stem Cells/cytology , Signal Transduction
2.
Cell ; 159(4): 940-54, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417167

ABSTRACT

Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.


Subject(s)
Cell-Free System , Gene Regulatory Networks , In Vitro Techniques , Ebolavirus/classification , Ebolavirus/genetics , Nucleic Acid Conformation , Paper , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...