Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
2.
J Med Microbiol ; 72(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36748566

ABSTRACT

Introduction. Coccidiosis, caused by protozoan parasites of genus Eimeria, is a disease with large impact on poultry production worldwide. It is well known that Eimeria immunity is dependent on Th1-type responses.Gap Statement. In vitro assessment of Eimeria-specific T-cell activity would therefore be a valuable research tool but has so far proven difficult to establish.Aim. The present study aimed to evaluate in vitro induced blast transformation and CD25 expression in defined chicken T-cell populations as a measure of Eimeria immunity.Methodology. Three E. tenella infection experiments were performed and PBMC and/or spleen cells were collected between 6 and 16 days after infection of chickens. Cells were stimulated in vitro with E. tenella antigens and T-cell activation was assessed by immunofluorescence labelling and flow cytometry.Results. The results consistently showed statistically significant E. tenella specific activation of TCRα/ß+T cells within a 'window' from 8 to 14 days after infection for both spleen cells and PBMC. Responding T-cells were identified as CD4+CD8-, CD4+CD8αα+ and CD4-CD8αß+ where the CD4+CD8αα+ cells generally showed the highest responses. All three of these TCRα/ßT-cell subsets showed significant E. tenella induced blast transformation and/or CD25 expression albeit not always in concert on the same days after infection indicating complex kinetics of T-cell responses. In general, responses were higher for spleen cells compared to PBMC for all responding T-cell populations.Conclusions. This methodology shows promise to study Eimeria-specific T-cells, e.g. to evaluate vaccine responses. Results indicated that a Th1-type response was induced and suggested a role for CD4+CD8αα+ cells in Eimeria immunity.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , T-Lymphocytes , Animals , Chickens/immunology , Coccidiosis/immunology , Coccidiosis/veterinary , Leukocytes, Mononuclear , Poultry Diseases/immunology , Poultry Diseases/parasitology , T-Lymphocytes/immunology
3.
Animals (Basel) ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011218

ABSTRACT

Unfavorable alterations of the commensal gut microbiota and dysbacteriosis is a major health problem in the poultry industry. Understanding how dietary intervention alters the microbial ecology of broiler chickens is important for prevention strategies. A trial was conducted with 672 Ross 308 day-old male broilers fed a basic diet (no additives, control) or the basic diet supplemented with 500 mg/kg encapsulated butyrate or 68 mg/kg salinomycin. Enteric challenge was induced by inclusion of 50 g/kg rye in a grower diet and oral gavage of a 10 times overdose of a vaccine against coccidiosis. Compared to control and butyrate-supplemented birds, salinomycin supplementation alleviated growth depression. Compared to butyrate and non-supplemented control, salinomycin increased potentially beneficial Ruminococcaceae and reduced potentially pathogenic Enterobacteriaceae and counts of Lactobacillus salivarius and Clostridium perfringens. Further, salinomycin supplementation was accompanied by a pH decrease and succinic acid increase in ceca, while coated butyrate (0.5 g/kg) showed no or limited effects. Salinomycin alleviated growth depression and maintained intestinal homeostasis in the challenged broilers, while butyrate in the tested concentration showed limited effects. Thus, further investigations are required to identify optimal dietary inclusion rates for butyrate used as alternative to ionophore coccidiostats in broiler production.

4.
BMC Vet Res ; 17(1): 111, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33676514

ABSTRACT

BACKGROUND: Erysipelas, caused by Erysipelothrix rhusiopathiae (ER), is an important emerging disease in free-range and organic egg-production. The aim of the present study was to assess if quantification of ER specific IgY titers may aid the understanding of erysipelas in commercial laying hens. The methodology was validated with sequentially collected sera from experimentally ER infected SPF-chickens and subsequently applied on sera from Swedish commercial laying hens collected during and after outbreaks of erysipelas or collected at slaughter from healthy hens housed in furnished cages, barn production or in organic production (with outdoor access). RESULTS: In experimentally infected SPF-chickens, titers to ER were significantly increased approximately one week after infection while IgY to ER in uninfected age-matched controls remained low. Also chickens infected with low doses of ER, not displaying clinical signs of disease and with low recovery of ER in blood samples showed high titers of IgY to ER. For laying hens during and after erysipelas outbreaks the majority of samples were considered positive for antibodies to ER with a large variation in levels of IgY titers to ER between individuals. For healthy laying hens at slaughter all samples were deemed positive for antibodies to ER. An influence of flock on levels of IgY titers to ER was observed for both healthy hens and hens during erysipelas outbreaks. For healthy laying hens at slaughter no influence of the housing systems included in the study, history of erysipelas outbreaks at the farm or vaccination on levels of IgY titers to ER was noticed. CONCLUSIONS: Taken together, these results show that high numbers of commercial laying hens showed high IgY titers to ER, comparable to those elicited by experimental ER infection, indicating that ER or bacteria that raises antibodies that cross-react with ER are common in this environment.


Subject(s)
Erysipelothrix Infections/epidemiology , Immunoglobulins/blood , Poultry Diseases/immunology , Animals , Chickens , Erysipelothrix/immunology , Erysipelothrix/isolation & purification , Erysipelothrix Infections/immunology , Female , Housing, Animal , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Sweden/epidemiology
5.
Vet Res ; 51(1): 114, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32928307

ABSTRACT

Erysipelas, a disease caused by Erysipelothrix rhusiopathiae (ER), is an increasing problem in laying hens housed in cage-free systems. This study aimed to monitor immune responses during ER infection of naïve chickens and chickens vaccinated intra muscularly with a commercial inactivated ER vaccine. Chickens were infected intra muscularly with ER at 30 days of age and blood leukocyte counts, serum levels of mannose binding lectin (MBL) and ER-specific IgY were monitored until the experiment was terminated at day 15 after infection. ER was detected in blood from more chickens and at higher bacterial counts in the naïve group (day 1: 1 of 7 chickens; day 3: 6 of 6 chickens) than in the vaccinated group (day 1: 0 of 7 chickens; day 3: 1 of 6 chickens). During the acute phase of infection transient increases in circulating heterophil numbers and serum MBL levels were detected in all ER infected chickens but these responses were prolonged in chickens from the naïve group compared to vaccinated chickens. Before infection IgY titers to ER in vaccinated chickens did not differ significantly from those of naïve chickens but vaccinated chickens showed significantly increased IgY titers to ER earlier after infection compared to chickens in the naïve group. In conclusion, the ER infection elicited prompt acute innate responses in all chickens. Vaccinated chickens did not have high IgY titers to ER prior to infection but did however show lower levels of bacteraemia and their acute immune responses were of shorter duration.


Subject(s)
Chickens , Erysipelothrix Infections/immunology , Erysipelothrix/physiology , Immunity, Innate , Poultry Diseases/immunology , Animals , Avian Proteins/blood , Erysipelothrix Infections/microbiology , Female , Immunoglobulins/blood , Leukocyte Count/veterinary , Mannose-Binding Lectin/blood , Poultry Diseases/microbiology , Specific Pathogen-Free Organisms
6.
J Med Microbiol ; 68(7): 1003-1011, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31172912

ABSTRACT

PURPOSE: The present study aimed to establish pretreatment protocols as well as real-time and droplet digital polymerase chain reaction (PCR) methodologies to detect and quantify Erysipelothrix rhusiopathiae (ER) DNA in blood samples from infected chickens, as tools for routine diagnostics and monitoring of experimental infections. Chicken blood is a problematic matrix for PCR analysis because nucleated erythrocytes contribute large amounts of host DNA that inhibit amplification. METHODOLOGY: Using artificially spiked samples of fresh chicken blood, as well as blood samples from three experimental infection studies, the performance of pretreatment protocols, including choice of blood stabilization agent, centrifugation speeds and Ficoll gradient separation, was evaluated. The results were compared with those from traditional culture-based protocols combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).Results/Key findings. Simple preparations producing cell-free samples performed well on artificial spike-in samples, providing high sensitivity. However, performance was poor in clinical samples or artificial samples where the bacteria were incubated for 4 h or more in fresh blood prior to DNA extraction. In these samples, a Ficoll separation protocol that creates samples rich in lymphocytes, monocytes and thrombocytes prior to DNA extraction was far more effective. CONCLUSIONS: Our results indicate that ER bacteria undergo rapid phagocytosis in chicken blood and that analysis of a blood fraction enriched for phagocytic cells is necessary for reliable detection and quantification. The presented results explain the poor performance of PCR detection reported in previously published experimental ER infection studies, and the proposed solutions are likely to have broader implications for PCR-based veterinary diagnostics in non-mammalian host species such as poultry and fish.


Subject(s)
Chickens/microbiology , DNA, Bacterial/genetics , Erysipelothrix Infections/microbiology , Erysipelothrix/genetics , Polymerase Chain Reaction/veterinary , Poultry Diseases/microbiology , Animals , Erysipelothrix/isolation & purification , Erysipelothrix Infections/diagnosis , Erythrocytes/cytology , Erythrocytes/microbiology , Polymerase Chain Reaction/methods
7.
Poult Sci ; 98(2): 653-663, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30289491

ABSTRACT

Infections associated with avian pathogenic Escherichia coli (APEC) cause severe economic losses to the poultry industry. The study presented herein investigated the in vivo performance of a single phage with prolonged in vivo and in vitro survivability alone or in combination with 3 other selected phages in treating colibacillosis in quails. Japanese quails (N = 360) were randomly assigned to 6 treatment groups with 4 replicate pens. Birds from the control groups (groups I, II, and III) were treated with 200 µL sterile PBS (pH 7.4), 200 µL of the selected phage (1010 pfu; TM3) or a cocktail of 4 phages (TM3 plus TM1, TM2, and TM4), respectively. Groups IV, V, and VI were challenged with 200 µL E. coli (108 cfu; O78:K80 and O2:K1) and treated with i.m. injection of 200 µL sterile PBS, phage TM3, or cocktail of 4 phages, respectively. Based on the results of the present study, the total mortality rate decreased from 46.6% in the untreated E. coli-challenged group to 26.5% and 13.6% in the E. coli-challenged group treated with single phage or phage cocktail, respectively. The body weights of birds treated with the phage cocktail were higher than the body weights of untreated birds on days 7, 14, and 21 post-challenge (P < 0.05). In addition, total viable cell counts of E. coli in the lungs of birds treated with the phage cocktail were lower than those of birds treated with phage TM3 on days 3 and 10 post-challenge (P < 0.05). Moreover, the incidence and severity of lesions in lungs, heart, and liver were found to be significantly less in the E. coli- challenged group treated with the phage cocktail. In conclusion, this study indicates that a phage cocktail may be more efficient in treating colibacillosis than a single phage possibly due to a synergistic effect between the individual phages.


Subject(s)
Coliphages/physiology , Escherichia coli Infections/veterinary , Phage Therapy/veterinary , Poultry Diseases/prevention & control , Quail , Animals , Escherichia coli/virology , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Poultry Diseases/microbiology , Random Allocation
8.
Parasitology ; 146(5): 625-633, 2019 04.
Article in English | MEDLINE | ID: mdl-30409239

ABSTRACT

This study aimed to set up methodology to monitor parasite-specific T-cell activation in vitro using Eimeria tenella-infected chickens. A sonicated E. tenella sporozoite protein preparation was used for the activation of chicken spleen cell cultures. Proliferation assessed by 3H-thymidin incorporation or blast transformation of T-cells assessed by immunofluorescence labelling and flow cytometry were used as read-outs for activation. Results showed that E. tenella-specific proliferation was detected in cultures of spleen cells collected in a 'window' between 8 and 14 days after primary infection. However, due to high variation in proliferative responses between individuals and to high background proliferation, large numbers of observations were needed to obtain significant results. Moreover, the outcome was not improved by increasing the infection dose to chickens or by depletion of T-cell receptor (TCR) γ/δ expressing cells from cultures. An E. tenella-specific blast transformation response was observed for TCRα/ß expressing cells within the same 'window', confirming the identity of the responding cells as classic T-cells. Thus, it is possible to study the kinetics of E. tenella-specific T-cell responses in vitro. However, more in-depth phenotypic identification of the responding T-cells could improve the methodology.


Subject(s)
Antigens, Protozoan/pharmacology , Chickens/immunology , Coccidiosis/veterinary , Eimeria tenella/physiology , Poultry Diseases/immunology , Spleen/parasitology , Animals , Coccidiosis/immunology , Lymphocyte Activation
9.
J Trace Elem Med Biol ; 49: 231-240, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29402502

ABSTRACT

Zinc is an essential trace element, highly important for a well functioning immune system. In case of zinc deficiency, proper immune functions are not ensured thus leading to various diseases. Weaning of pigs from the sow causes stress, increasing susceptibility to infections. Moreover, low feed intake during the first two weeks post-weaning, accompanied by low zinc intake, results in temporary zinc deficiency. Therefore, supporting the immune system by zinc supplementation might improve its function and thereby the pigs' health and well-being. In this study, the immune status of weaned pigs was analyzed under different conditions of zinc supplementation. More precisely, the daily porcine diet was either left unsupplemented (0 ppm), or was supplemented with low (100 ppm), or high (2500 ppm) amounts of additional zinc in the form of zinc oxide (ZnO) (Zn0, Zn100, and Zn2500, respectively). Porcine innate and adaptive immune cells of the different dietary groups were analyzed. Results revealed an improved innate immune capacity, represented by increased phagocytosis and slightly increased oxidative burst in cells from the Zn2500 pigs and Zn100 pigs, respectively. Apart from that, zinc supplementation improved adaptive immunity, as seen by increased numbers of CD3+ T cells as well as increased numbers of CD3+CD4+Foxp3+ regulatory T cells, elevated interleukin (IL)-2 production and decreased IL-10 production. Although not significant, supplementing 2500 ppm zinc slightly decreased killing activity of natural killer (NK) cells. Thus, the optimal concentration for zinc supplementation of weaned pigs two weeks post-weaning needs to be further studied, presumably establishing an optimal concentration between 100 ppm and 2500 ppm zinc. Genome comparisons indicate that the porcine genome is more closely related to the human genome than the murine genome is related to the human genome. Therefore, the pig seems to be a suitable organism to study human immunity and diseases. Results obtained in the current study might therefore be transferable to the human immune system.


Subject(s)
Weaning , Zinc Oxide/pharmacology , Zinc/pharmacology , Adaptive Immunity/drug effects , Animals , Copper/pharmacology , Dietary Supplements , Female , Interleukin-10/metabolism , Interleukin-2/metabolism , Male , Respiratory Burst/drug effects , Swine , T-Lymphocytes, Regulatory
10.
Methods Mol Biol ; 1404: 77-88, 2016.
Article in English | MEDLINE | ID: mdl-27076291

ABSTRACT

Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte subsets.The carboxyfluorescein succinimidyl ester (CFSE) method described in this chapter has been adapted to chicken cells. In this test, cells of interest are stained with CFSE. The succinimidyl ester group covalently binds to cellular amines forming fluorescent conjugates that are retained in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells responding to the stimulation. This method has been successfully applied to studies of chicken antigen-specific T cells.


Subject(s)
Antigens, Viral/immunology , Flow Cytometry/methods , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viral Vaccines/immunology , Animals , Cell Culture Techniques , Chickens , Fluoresceins/metabolism , Phenotype , Staining and Labeling , Succinimides/metabolism , T-Lymphocytes/metabolism
11.
BMC Genomics ; 17: 82, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26819139

ABSTRACT

BACKGROUND: Avian infectious bronchitis is a highly contagious disease of the upper-respiratory tract caused by infectious bronchitis virus (IBV). Understanding the molecular mechanisms involved in the interaction between innate and adaptive immune responses to IBV infection is a crucial element for further improvements in strategies to control IB. To this end, two chicken lines, selected for high (L10H line) and low (L10L line) serum concentration of mannose-binding lectin (MBL) were studied. In total, 32 birds from each line were used. Sixteen birds from each line were infected with IBV and sixteen were left uninfected. Eight uninfected and infected birds from each line were euthanized at 1 and 3 weeks post infection. RNA sequencing was performed on spleen samples from all 64 birds and differential gene expression analysis was performed for four comparisons: L10L line versus L10H line for uninfected birds at weeks 1 and 3, respectively, and in the same way for infected birds. Functional analysis was performed using Gene Ontology (GO) Immune System Process terms specific for Gallus gallus. RESULTS: Comparing uninfected L10H and L10L birds, we identified 1698 and 1424 differentially expressed (DE) genes at weeks 1 and 3, respectively. For the IBV-infected birds, 1934 and 866 DE genes were identified between the two lines at weeks 1 and 3, respectively. The two most enriched GO terms emerging from the comparison of uninfected birds between the two lines were "Lymphocyte activation involved in immune response" and "Somatic recombination of immunoglobulin genes involved in immune response" at weeks 1 and 3, respectively. When comparing IBV-infected birds between the two lines, the most enriched GO terms were "Alpha-beta T cell activation" and "Positive regulation of leukocyte activation" at weeks 1 and 3, respectively. CONCLUSIONS: Healthy birds from the two lines showed significant differences in expression profiles for subsets of adaptive and innate immunity-related genes, whereas comparison of the IBV-infected birds from the two lines showed differences in expression of immunity-related genes involved in T cell activation and proliferation. The observed transcriptome differences between the two lines indicate that selection for MBL had influenced innate as well as adaptive immunity.


Subject(s)
Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Mannose-Binding Lectin/blood , Mannose-Binding Lectin/genetics , Transcriptome , Animals , Chickens , Coronavirus Infections/physiopathology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...