Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 6(2): 92-102, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21277274

ABSTRACT

Maintaining stable differentiated somatic cell function in culture is essential to a range of biological endeavors. However, current technologies, employing, for example, primary hepatic cell culture (essential to the development of a bio-artificial liver and improved drug and toxicology testing), are limited by supply, expense, and functional instability even on biological cell culture substrata. As such, novel biologically active substrates manufacturable to GMP standards have the potential to improve cell culture-based assay applications. Currently hepatic endoderm (HE) generated from pluripotent stem cells is a genotypically diverse, cheap, and stable source of "hepatocytes"; however, HE routine applications are limited due to phenotypic instability in culture. Therefore a manufacturable subcellular matrix capable of supporting long-term differentiated cell function would represent a step forward in developing scalable and phenotypically stable hESC-derived hepatocytes. Adopting an unbiased approach we screened polymer microarrays and identified a polyurethane matrix which promoted HE viability, hepatocellular gene expression, drug-inducible metabolism, and function. Moreover, the polyurethane supported, when coated on a clinically approved bio-artificial liver matrix, long-term hepatocyte function and growth. In conclusion, our data suggest that an unbiased screening approach can identify cell culture substrate(s) that enhance the phenotypic stability of primary and stem cell-derived cell resources.


Subject(s)
Cell Culture Techniques , Hepatocytes/cytology , Hepatocytes/metabolism , Inactivation, Metabolic , Small Molecule Libraries , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Extracellular Matrix/chemistry , Humans , Liver, Artificial , Mice , Microarray Analysis , Molecular Structure , Pharmaceutical Preparations , Polymers/chemistry
2.
Hepatology ; 51(1): 329-35, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19877180

ABSTRACT

UNLABELLED: With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation to a defined lineage, such as hepatic endoderm (HE), iPSCs would revolutionize the way we study human liver biology and generate efficient "off the shelf" models of human liver disease. Here, we show the "proof of concept" that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70%-90%, using a method mimicking physiological relevant condition. The iPSC-derived HE exhibited hepatic morphology and expressed the hepatic markers albumin and E-cadherin, as assessed by immunohistochemistry. They also expressed alpha-fetoprotein, hepatocyte nuclear factor-4a, and a metabolic marker, cytochrome P450 7A1 (Cyp7A1), demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin, and alpha-fetoprotein, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and CYP3A4 metabolism, which is essential for drug and toxicology testing. CONCLUSION: This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSCs that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSCs from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionize predictive drug toxicology assays and allow the creation of in vitro hepatic disease models.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/physiology , Endoderm/cytology , Induced Pluripotent Stem Cells/cytology , Liver/cytology , Cell Lineage , Female , Humans , Male
3.
Am J Physiol Gastrointest Liver Physiol ; 297(2): G241-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19520740

ABSTRACT

The emergence of regenerative medicine has led to significant advances in the identification and understanding of human stem cells and adult progenitor cells. Both cell populations exhibit plasticity and theoretically offer a potential source of somatic cells in large numbers. Such a resource has an important role to play in the understanding of human development, in modeling human disease and drug toxicity, and in the generation of somatic cells in large numbers for cell-based therapies. Presently, liver transplantation is the only effective treatment for end-stage liver disease. Although this procedure can be carried out with high levels of success, the routine transplant of livers is severely limited by organ donor availability. As a result, attention has focused on the ability to restore liver mass and function by alternative approaches ranging from the bioartificial device to transplantation of human hepatocytes. In this review we will focus on the generation of human hepatic endoderm from different stem/progenitor cell populations with a view to its utility in regenerative medicine.


Subject(s)
Hepatocytes/transplantation , Liver Diseases/surgery , Liver Regeneration , Liver, Artificial/trends , Liver/surgery , Regenerative Medicine/trends , Stem Cell Transplantation/trends , Tissue Engineering/trends , Adult , Adult Stem Cells/transplantation , Animals , Cell Culture Techniques/trends , Cell Differentiation , Cell Lineage , Cell Proliferation , Drug Discovery/trends , Embryonic Stem Cells/transplantation , Humans , Liver/pathology , Liver Diseases/pathology , Pluripotent Stem Cells/transplantation , Toxicity Tests/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...