Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-516726

ABSTRACT

The SARS-CoV-2 pandemic made evident that we count with few coronavirus-fighting drugs. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety and tolerability profiles. We began elaborating a list of 116 drugs previously used to treat other pathologies or characterized in pre-clinical studies with potential to treat coronavirus infections. We next employed molecular modelling tools to rank the 44 most promising inhibitors and tested their efficacy as antivirals against a panel of and {beta} coronavirus, e.g., the HCoV-229E and SARS-CoV-2 viruses. Four drugs, OSW-1, U18666A, hydroxypropyl-{beta}-cyclodextrin (H{beta}CD) and phytol, showed antiviral activity against both HCoV-229E (in MRC5 cells) and SARS-CoV-2 (in Vero E6 cells). The mechanism of action of these compounds was studied by transmission electron microscopy (TEM) and by testing their capacity to inhibit the entry of SARS-CoV-2 pseudoviruses in ACE2-expressing HEK-293T cells. The entry was inhibited by H{beta}CD and U18666A, yet only H{beta}CD could inhibit SARS-CoV-2 replication in the pulmonary cells Calu-3. With these results and given that cyclodextrins are widely used for drug encapsulation and can be safely administered to humans, we further tested 6 native and modified cyclodextrins, which confirmed {beta}-cyclodextrins as the most potent inhibitors of SARS-CoV-2 replication in Calu-3 cells. All accumulated data points to {beta}-cyclodextrins as promising candidates to be used in the therapeutic treatments for SARS-CoV-2 and possibly other respiratory viruses.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22278560

ABSTRACT

BackgroundWe report safety, tolerability, and immunogenicity of a recombinant protein RBD-fusion heterodimeric vaccine against SARS-CoV-2 (PHH-1V). MethodsA dose-escalation, phase 1-2a, randomized clinical trial was performed in Catalonia, Spain. Each cohort had one safety sentinel that received PHH-1V vaccine of the corresponding dose, and remaining participants were randomly assigned to receive PHH-1V formulations [10{micro}g (n=5), 20{micro}g (n=10), 40{micro}g (n=10)] or control BNT162b2 (n=5). Two intramuscular doses (0-21 days) were administered. Primary endpoint was solicited events 7 days after each vaccination and secondary-exploratory endpoints were humoral and cellular immunogenicity. Findings30 young healthy adults were enrolled, thirteen were female. Vaccines were safe, well tolerated. The most common solicited events for all groups were tenderness and pain at the site of injection. The proportion of subjects with at least one reported local and/or systemic solicited adverse events (AE) after first or second vaccine dose were lowest in PHH-1V (n=21, 84%) than control group (n=5, 100%). AE were mild to moderate, and no severe AE nor AE of special interest were reported. All participants had a >4-fold change at day 35 in total binding antibodies from baseline. Variants of concern (VOC) alpha, beta, delta and gamma were evaluated using a SARS-CoV-2 pseudovirus-based neutralization assay. All groups had a significant geometric mean fold rise (p<.0001) at day 35 against all studied VOC. Similar results were obtained when a full replicative virus neutralization assay was carried out. InterpretationPHH-1V was safe, well tolerated, and induced robust humoral responses. These data support further exploration of PHH-1V in larger studies. FundingHIPRA ClinicalTrials.gov IdentifierNCT05007509 Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed up until August 1, 2021, with the terms "SARS-CoV-2", "COVID-19" and "vaccine". We initially identified 12,952 results but when added the terms "clinical trial" and "variants" this number decreased to 50. Of these references twelve were clinical trials, and although several vaccines were under development, and the ones that were already approved for administration in the general population described the neutralization effect to the different circulating variants of concern, we could not find any reference to a vaccine developed using variants of concern instead of ancestral Wuhan strain. Added value of this studyTo the best of our knowledge, our study is the first clinical trial to assess the effect as a primary series of a recombinant protein receptor-binding domain fusion heterodimer PHH-1V vaccine against SARS-CoV-2 not including the ancestral strain in its composition. This vaccine contains RBD from B{middle dot}1{middle dot}351 (beta) and B{middle dot}1{middle dot}1{middle dot}7 (alpha) variants and is co-formulated with an oil-in-water adjuvant emulsion. In this first-in-human randomized clinical trial, two doses of the SARS-CoV-2 PHH-1V vaccine in a range of 10 to 40 {micro}g/dose were safe and well-tolerated and induced robust humoral immune responses to different circulating variants of concern, including alpha (B1{middle dot}1{middle dot}7), beta (B{middle dot}1{middle dot}351), delta (B{middle dot}1{middle dot}617{middle dot}2) and gamma (P{middle dot}1). Additionally, the PHH-1V 40{micro}g dose vaccine elicited moderated cellular immune responses, particularly to variants of concern alpha and delta. Implications of all the available evidenceThese findings indicate that the recombinant protein receptor-binding domain fusion heterodimer vaccine PHH-1V is safe and immunogenic. Phase 2b and Phase 3 clinical trials are ongoing to further investigate its safety and protective efficacy as heterologous booster.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22277210

ABSTRACT

Background: A SARS-CoV-2 protein-based heterodimer vaccine, PHH-1V, has been shown to be safe and well-tolerated in healthy young adults in a first-in-human, Phase I/IIa study dose-escalation trial. Here, we report the interim results of the Phase IIb HH-2, where the immunogenicity and safety of a heterologous booster with PHH-1V is assessed versus a homologous booster with BNT162b2 at 14, 28 and 98 days after vaccine administration. Methods: The HH-2 study is an ongoing multicentre, randomised, active-controlled, double-blind, non-inferiority Phase IIb trial, where participants 18 years or older who had received two doses of BNT162b2 were randomly assigned in a 2:1 ratio to receive a booster dose of vaccine -either heterologous (PHH-1V group) or homologous (BNT162b2 group)- in 10 centres in Spain. Eligible subjects were allocated to treatment stratified by age group (18-64 versus [≥]65 years) with approximately 10% of the sample enrolled in the older age group. The primary endpoints were humoral immunogenicity measured by changes in levels of neutralizing antibodies (PBNA) against the ancestral Wuhan-Hu-1 strain after the PHH-1V or the BNT162b2 boost, and the safety and tolerability of PHH-1V as a boost. The secondary endpoints were to compare changes in levels of neutralizing antibodies against different variants of SARS-CoV-2 and the T-cell responses towards the SARS-CoV-2 spike glycoprotein peptides. The exploratory endpoint was to assess the number of subjects with SARS-CoV-2 infections [≥]14 days after PHH-1V booster. This study is ongoing and is registered with ClinicalTrials.gov, NCT05142553. Findings: From 15 November 2021, 782 adults were randomly assigned to PHH-1V (n=522) or BNT162b2 (n=260) boost vaccine groups. The geometric mean titre (GMT) ratio of neutralizing antibodies on days 14, 28 and 98, shown as BNT162b2 active control versus PHH-1V, was, respectively, 1.68 (p<0.0001), 1.31 (p=0.0007) and 0.86 (p=0.40) for the ancestral Wuhan-Hu-1 strain; 0.62 (p<0.0001), 0.65 (p<0.0001) and 0.56 (p=0.003) for the Beta variant; 1.01 (p=0.92), 0.88 (p=0.11) and 0.52 (p=0.0003) for the Delta variant; and 0.59 (p=<0.0001), 0.66 (p<0.0001) and 0.57 (p=0.0028) for the Omicron BA.1 variant. Additionally, PHH-1V as a booster dose induced a significant increase of CD4+ and CD8+ T-cells expressing IFN-{gamma} on day 14. There were 458 participants who experienced at least one adverse event (89.3%) in the PHH-1V and 238 (94.4%) in the BNT162b2 group. The most frequent adverse events were injection site pain (79.7% and 89.3%), fatigue (27.5% and 42.1%) and headache (31.2 and 40.1%) for the PHH-1V and the BNT162b2 groups, respectively. A total of 52 COVID-19 cases occurred from day 14 post-vaccination (10.14%) for the PHH-1V group and 30 (11.90%) for the BNT162b2 group (p=0.45), and none of the subjects developed severe COVID-19. Interpretation: Our interim results from the Phase IIb HH-2 trial show that PHH-1V as a heterologous booster vaccine, when compared to BNT162b2, although it does not reach a non-inferior neutralizing antibody response against the Wuhan-Hu-1 strain at days 14 and 28 after vaccination, it does so at day 98. PHH-1V as a heterologous booster elicits a superior neutralizing antibody response against the previous circulating Beta and Delta SARS-CoV-2 variants, as well as the currently circulating Omicron BA.1. Moreover, the PHH-1V boost also induces a strong and balanced T-cell response. Concerning the safety profile, subjects in the PHH-1V group report significantly fewer adverse events than those in the BNT162b2 group, most of mild intensity, and both vaccine groups present comparable COVID-19 breakthrough cases, none of them severe. Funding: HIPRA SCIENTIFIC, S.L.U.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-472880

ABSTRACT

The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation factor 1 alpha 1) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin completely blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-454861

ABSTRACT

SARS-CoV-2 variants display enhanced transmissibility and/or immune evasion and can be generated in humans or animals, like minks, thus generating new reservoirs. The continuous surveillance of animal susceptibility to new variants is necessary to predict pandemic evolution. In this study we demonstrate that, compared to the B.1 SARS-CoV-2 variant, K18-hACE2 transgenic mice challenged with the B.1.351 variant displayed a faster progression of infection. Furthermore, we also report that B.1.351 can establish infection in wildtype mice, while B.1 cannot. B.1.351-challenged wildtype mice showed a milder infection than transgenic mice, confirmed by detectable viral loads in oropharyngeal swabs and tissues, lung pathology, immunohistochemistry and serology. In silico models supported these findings by demonstrating that the Spike mutations in B.1.351 resulted in increased affinity for both human and murine ACE2 receptors. Overall, this study highlights the plasticity of SARS-CoV-2 animal susceptibility landscape, which may contribute to viral persistence and expansion.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-443572

ABSTRACT

COVID-19 pandemic is not yet under control by vaccination, and effective antivirals are critical for preparedness. Here we report that macrophages and dendritic cells, key antigen presenting myeloid cells (APCs), are largely resistant to SARS-CoV-2 infection. APCs effectively captured viruses within cellular compartments that lead to antigen degradation. Macrophages sense SARS-CoV-2 and released higher levels of cytokines, including those related to cytokine storm in severe COVID-19. The sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169) present on APCs, which interacts with sialylated gangliosides on membranes of retroviruses or filoviruses, also binds SARS-CoV-2 via GM1. Blockage of Siglec-1 receptors by monoclonal antibodies reduces SARS-CoV-2 uptake and transfer to susceptible target cells. APCs expressing Siglec-1 and carrying SARS-CoV-2 are found in pulmonary tissues of non-human primates. Single cell analysis reveals the in vivo induction of cytokines in those macrophages. Targeting Siglec-1 could offer cross-protection against SARS-CoV-2 and other enveloped viruses that exploit APCs for viral dissemination, including those yet to come in future outbreaks.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-423779

ABSTRACT

Oral mouthwashes decrease the infectivity of several respiratory viruses including SARS-CoV-2. However, the precise agents with antiviral activity present in these oral rinses and their exact mechanism of action remain unknown. Here we show that Cetylpyridinium chloride (CPC), a quaternary ammonium compound present in many oral mouthwashes, reduces SARS-CoV-2 infectivity by inhibiting the viral fusion step with target cells after disrupting the integrity of the viral envelope. We also found that CPC-containing mouth rinses decreased more than a thousand times the infectivity of SARS-CoV-2 in vitro, while the corresponding vehicles had no effect. This activity was effective for different SARS-CoV-2 variants, including the B.1.1.7 variant, predominant in UK, also in the presence of sterilized saliva. CPC-containing mouth rinses could therefore represent a cost-effective measure to reduce SARS-CoV-2 infectivity in saliva, aiding to reduce viral transmission from infected individuals regardless of the variants they are infected with.

SELECTION OF CITATIONS
SEARCH DETAIL
...