Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 53(12): 6244-6294, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38743011

ABSTRACT

This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.

2.
Chem Soc Rev ; 53(12): 6625, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38805351

ABSTRACT

Correction for 'Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications' by Saba Daliran et al., Chem. Soc. Rev., 2024, https://doi.org/10.1039/d3cs01057k.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770519

ABSTRACT

A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.

4.
Heliyon ; 9(1): e12634, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36647357

ABSTRACT

Considering the inducement side impacts and precipitation of continual doses in conventional therapeutic treatments, there is an urgent need in the field of drug delivery for novel designs of biocompatible carriers with wide loading dimensions and particularly the ability to control their drug release. In this work, we succeeded in synthesizing an iron-based organic metal framework based on iron-porphyrin (PCN-600) through a solvothermal method to function as a drug delivery system (DDS). According to SEM results, PCN-600 crystals a hexagonal-rod shaped morphology with the length of 300 nm and width of 100-300 nm. As an anticancer drug, Paclitaxel (PTX) was successfully loaded into the porphyrin-based metal-organic framework (PCN-600) via in-situ encapsulation; the loading efficiency was measured to be about 87.3%. In addition, PTX-encapsulated PCN-600 displayed a controlled and sustained release for up to 24 h of release assessment at the physiological microenvironment of pH = 7.4.

5.
Adv Mater ; 35(24): e2209475, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36563668

ABSTRACT

Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.

6.
Chem Soc Rev ; 51(18): 8140, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36004669

ABSTRACT

Correction for 'Metal-organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions' by Saba Daliran et al., Chem. Soc. Rev., 2022, https://doi.org/10.1039/d1cs00976a.

7.
Chem Soc Rev ; 51(18): 7810-7882, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35938695

ABSTRACT

Although C-H functionalization is one of the simplest reactions, it requires the use of highly active and selective catalysts. Recently, C-H-active transformations using porous materials such as crystalline metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) as well as amorphous porous-organic polymers (POPs) as new emerging heterogeneous catalysts have attracted significant attention due to their promising activity and potential material tunability. These porous solids offer exceptional structural uniformity, facile tunability and permanent porosity. In addition, tuning the catalytic selectivity of these porous materials can be achieved through engineering their site microenvironments, such as metal node substitution, linker changes, node/linker functionalization, and pore modification. The present review provides an overview of the current state of the art on MOFs, COFs and POPs as advanced catalysts for various C-H bond activation reactions, providing details about their chemo-, regio-, and stereo-selectivity control, comparing their performance with that of other catalysts, triggering additional research by showing the present limitations and challenges in this area, and providing a perspective for future developments.

8.
ACS Appl Mater Interfaces ; 14(32): 36515-36526, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35939817

ABSTRACT

Metal-organic frameworks (MOFs) and metal halide perovskites are currently under much investigation due to their unique properties and applications. Herein, an innovative strategy has been developed combining an iron-porphyrin MOF, PCN-222(Fe), and an in situ-grown CsCu2I3 nontoxic lead-free halide perovskite based on an earth-abundant metal that becomes incorporated within the MOF channels [CsCu2I3@PCN-222(Fe)]. Encapsulation was designed to decrease and control the particle size and increase the stability of CsCu2I3. The hybrid materials were characterized by various techniques including FE-SEM, elemental mapping and line scanning EDX, TEM, PXRD, UV-Vis DRS, BET surface area, XPS, and photoemission measurements. Hybrid CsCu2I3@PCN-222(Fe) materials were examined as heterogeneous multifunctional (photo)catalysts for copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and one-pot selective photo-oxidation/Knoevenagel condensation cascade reaction. Interestingly, CsCu2I3@PCN-222(Fe) outperforms not only its individual components CsCu2I3 and PCN-222(Fe) but also other reported (photo)catalysts for these transformations. This is attributed to cooperation and synergistic effects of the PCN-222(Fe) host and CsCu2I3 nanocrystals. To understand the catalytic and photocatalytic mechanisms, control and inhibition experiments, electron paramagnetic resonance (EPR) measurements, and time-resolved phosphorescence were performed, revealing the main role of active species of Cu(I) in the click reaction and the superoxide ion (O2•-) and singlet oxygen (1O2) in the photocatalytic reaction.

9.
ACS Appl Mater Interfaces ; 12(22): 25221-25232, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32368890

ABSTRACT

This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (∼21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N3 with a nearly complete conversion (∼95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg g-1 at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 µg L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.

10.
Mol Divers ; 24(2): 335-344, 2020 May.
Article in English | MEDLINE | ID: mdl-31062142

ABSTRACT

New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.


Subject(s)
Phthalimides/chemistry , Porphyrins/chemistry , Models, Molecular
11.
J Colloid Interface Sci ; 561: 782-792, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31761467

ABSTRACT

A novel MIL-101(Cr) (MIL, Matérial Institut Lavoisier) supported propyl carboxylic acid, denoted here as MIL-101(Cr)-NH-CO-Pr-COOH, has been fabricated by post-synthetic modifications of nitro-functionalized MIL-101(Cr), MIL-101(Cr)-NO2. The resulting MOF was successfully characterized by using FT-IR, XRD, N2 adsorption-desorption, 1H NMR, SEM, ICP-OES, elemental analysis and TGA. Then, the prepared solid was used as an extremely highly effective multifunctional catalyst for the one-pot three-component synthesis of quinazolin-4(1H)-one derivatives as biologically active nitrogen heterocyclic compounds under solvent-free conditions. The important features of this methodology are good to excellent yields of products, the use of very small amounts of catalyst, short reaction time, non-requirement of organic solvents, and environmental benign and mild reaction conditions. Furthermore, turnover frequency was found to be in the range 3.5-50 h-1 under neat conditions, which is comparable to the reported previously for this reaction. Significantly, compared with the pristine MOF and the related homogenous catalysts, the MIL-10 1(Cr)-NHCO-Pr-COOH exhibited superior catalytic activity which can be attributed to the synergistic effect between isolated Lewis acidic Cr(III) nodes and Brønsted acidic free COOH groups in addition to the cooperative interplay of the Brønsted acid and the amine sites within the framework. More remarkably, MOF was stable and reusable up to three times without any changes in its activity and structure.

12.
Mikrochim Acta ; 185(10): 469, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30232647

ABSTRACT

An amino-functionalized zirconium metal-organic framework was composed with a 3D urea-based porous organic polymer to give a hybrid material termed UiO-66-NH2/urea-POP. The material was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller surface area measurements. It is shown to be a viable sorbent for solid-phase extraction of uranium from water samples. Parameters such as the pH value of the sample, amount of adsorbent, type and volume of eluent, adsorption and desorption time, and sample volume were optimized. Uranyl ion was quantified by using UV-vis spectrophotometry by using 1-(2-pyridyl-azo)-2-naphthol as the indicator. Figures of merits include (a) a maximum sorption capacity of 278 mg g-1; (b) a detection limit of 0.6 µg L-1; and (c) intra-day and inter-day precisions (for n = 5 at a concentration of 100 µg L-1) of 4.8 and 1.9%, respectively. The sorbent can be recycled, and no significant change was observed in the capacity and repeatability of the sorbent after seven extractions. The high surface area, metal-binding sites, and stability of the sorbent makes it a most viable tool for efficient and fast extraction and removal of uranium. Graphical abstract Schematic of a new porous hybrid solid, referred to as UiO-66-NH2/urea-POP. It combines a zirconium-based metal-organic framework and a urea-based porous organic polymer. It is shown to be a highly efficient sorbent for solid-phase extraction of uranium(VI) prior to its spectrophotometric determination.

13.
J Colloid Interface Sci ; 532: 700-710, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30121522

ABSTRACT

MIL-125(Ti)-NH2 has been modified by reaction of salicylaldehyde with the terephthalate amino groups to form a salicylideneimine that act as ligand of Cu2+. The success of the postsynthetic modification was assessed by FTIR spectroscopy of the MIL-125(Ti)-NH2-Sal-Cu and by analysis by 1H NMR spectroscopy of the organic linkers upon dissolution of MIL-125(Ti)-NH2-Sal-Cu. In comparison with parent MIL-125(Ti)-NH2 and MIL-125(Ti)-NH2-Sal, that exhibit a poor activity, the presence of the Cu-Schiff base complex in MIL-125(Ti)-NH2-Sal-Cu catalyst for the oxidation of 1-phenylethanol by tert-butylhydroperoxyde (TBHP, 3 eq.) increases notably the catalytic activity. Hot filtration test and reusability experiments confirm that the process is heterogeneous and that MIL-125(Ti)-NH2-Sal-Cu is stable under the reaction conditions. Quenching studies and EPR spectra using N-tbutylphenylnitrone indicate the generation of tBuOO and tBuO under the reaction conditions. The scope of MIL-125(Ti)-NH2-Sal-Cu as oxidation catalyst by tBuOOH was studied for benzyl alcohol as well as alicyclic and aliphatic alcohols and ethylbenzene.

SELECTION OF CITATIONS
SEARCH DETAIL
...