Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cheminform ; 11(1): 76, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-33430977

ABSTRACT

The chemfp project has had four main goals: (1) promote the FPS format as a text-based exchange format for dense binary cheminformatics fingerprints, (2) develop a high-performance implementation of the BitBound algorithm that could be used as an effective baseline to benchmark new similarity search implementations, (3) experiment with funding a pure open source software project through commercial sales, and (4) publish the results and lessons learned as a guide for future implementors. The FPS format has had only minor success, though it did influence development of the FPB binary format, which is faster to load but more complex. Both are summarized. The chemfp benchmark and the no-cost/open source version of chemfp are proposed as a reference baseline to evaluate the effectiveness of other similarity search tools. They are used to evaluate the faster commercial version of chemfp, which can test 130 million 1024-bit fingerprint Tanimotos per second on a single core of a standard x86-64 server machine. When combined with the BitBound algorithm, a k = 1000 nearest-neighbor search of the 1.8 million 2048-bit Morgan fingerprints of ChEMBL 24 averages 27 ms/query. The same search of 970 million PubChem fingerprints averages 220 ms/query, making chemfp one of the fastest CPU-based similarity search implementations. Modern CPUs are fast enough that memory bandwidth and latency are now important factors. Single-threaded search uses most of the available memory bandwidth. Sorting the fingerprints by popcount improves memory coherency, which when combined with 4 OpenMP threads makes it possible to construct an N × N similarity matrix for 1 million fingerprints in about 30 min. These observations may affect the interpretation of previous publications which assumed that search was strongly CPU bound. The chemfp project funding came from selling a purely open-source software product. Several product business models were tried, but none proved sustainable. Some of the experiences are discussed, in order to contribute to the ongoing conversation on the role of open source software in cheminformatics.

2.
J Chem Inf Model ; 58(5): 902-910, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29770697

ABSTRACT

Matched molecular pair analysis (MMPA) enables the automated and systematic compilation of medicinal chemistry rules from compound/property data sets. Here we present mmpdb, an open-source matched molecular pair (MMP) platform to create, compile, store, retrieve, and use MMP rules. mmpdb is suitable for the large data sets typically found in pharmaceutical and agrochemical companies and provides new algorithms for fragment canonicalization and stereochemistry handling. The platform is written in Python and based on the RDKit toolkit. It is freely available from https://github.com/rdkit/mmpdb .


Subject(s)
Drug Discovery/methods , Software , Algorithms , Databases, Pharmaceutical , Hydrogen/chemistry
3.
Bioinformatics ; 25(11): 1422-3, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19304878

ABSTRACT

SUMMARY: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. AVAILABILITY: Biopython is freely available, with documentation and source code at (www.biopython.org) under the Biopython license.


Subject(s)
Computational Biology/methods , Software , Databases, Factual , Internet , Programming Languages
SELECTION OF CITATIONS
SEARCH DETAIL
...