Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37420839

ABSTRACT

The Internet of things (IoT) accommodates lightweight sensor/actuator devices with limited resources; hence, more efficient methods for known challenges are sought after. Message queue telemetry transport (MQTT) is a publish/subscribe-based protocol that allows resource-efficient communication among clients, so-called brokers, and servers. However, it lacks viable security features beyond username/password checks, yet transport-layer security (TLS/HTTPS) is not efficient for constrained devices. MQTT also lacks mutual authentication among clients and brokers. To address the issue, we developed a mutual authentication and role-based authorization scheme for lightweight Internet of things applications (MARAS). It brings mutual authentication and authorization to the network via dynamic access tokens, hash-based message authentication code (HMAC)-based one-time passwords (HOTP), advanced encryption standard (AES), hash chains, and a trusted server running OAuth2.0 along with MQTT. MARAS merely modifies "publish" and "connect" messages among 14 message types of MQTT. Its overhead to "publish" messages is 49 bytes, and to "connect" messages is 127 bytes. Our proof-of-concept showed that the overall data traffic with MARAS remains lower than double the traffic without it, because "publish" messages are the most common. Nevertheless, tests showed that round-trip times for a "connect" message (and its "ack") are delayed less than a percentile of a millisecond; for a "publish" message, the delays depend on the size and frequency of published information, but we can safely say that the delay is upper bounded by 163% of the network defaults. So, the scheme's overhead to the network is tolerable. Our comparison with similar works shows that while our communication overhead is similar, MARAS offers better computational performance as it offloads computationally intensive operations to the broker side.


Subject(s)
Internet of Things , Humans , Computer Security , Computer Communication Networks , Telemetry , Communication
2.
Comput Methods Programs Biomed ; 120(2): 102-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25935361

ABSTRACT

Patients use nurse call systems to signal nurses for medical help. Traditional push button-flashing lamp call systems are not integrated with other hospital automation systems. Therefore, nurse response time becomes a matter of personal discretion. The improvement obtained by integrating a pager system into the nurse call systems does not increase care efficiency, because unnecessary visits are still not eliminated. To obtain an immediate response and a purposeful visit by a nurse; regardless of the location of nurse in hospital, traditional systems have to be improved by intelligent telephone system integration. The results of the developed Nurse Call System Software (NCSS), the Wireless Phone System Software (WPSS), the Location System Software (LSS) and the communication protocol are provided, together with detailed XML message structures. The benefits of the proposed system are also discussed and the direction of future work is presented.


Subject(s)
Communication , Nurse-Patient Relations , Cell Phone , Humans
3.
J Med Syst ; 38(8): 61, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24957387

ABSTRACT

Reliable sources report that errors in drug administration are increasing the number of harmed or killed inpatients, during healthcare. This development is in contradiction to patient safety norms. A correctly designed hospital-wide ubiquitous system, using advanced inpatient identification and matching techniques, should provide correct medicine and dosage at the right time. Researchers are still making grouping proof protocol proposals based on the EPC Global Class 1 Generation 2 ver. 1.2 standard tags, for drug administration. Analyses show that such protocols make medication unsecure and hence fail to guarantee inpatient safety. Thus, the original goal of patient safety still remains. In this paper, a very recent proposal (EKATE) upgraded by a cryptographic function is shown to fall short of expectations. Then, an alternative proposal IMS-NFC which uses a more suitable and newer technology; namely Near Field Communication (NFC), is described. The proposed protocol has the additional support of stronger security primitives and it is compliant to ISO communication and security standards. Unlike previous works, the proposal is a complete ubiquitous system that guarantees full patient safety; and it is based on off-the-shelf, new technology products available in every corner of the world. To prove the claims the performance, cost, security and scope of IMS-NFC are compared with previous proposals. Evaluation shows that the proposed system has stronger security, increased patient safety and equal efficiency, at little extra cost.


Subject(s)
Inpatients , Medication Systems, Hospital/organization & administration , Patient Safety , Radio Frequency Identification Device/organization & administration , Algorithms , Computer Security , Confidentiality , Humans , Medication Errors/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...