Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 9(1): 81-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24625062

ABSTRACT

The toxicity of silver nanoparticles (AgNP) to aquatic organisms, including zebrafish (Danio rerio), has been demonstrated, but differing opinions exist on the contribution of the physical properties of the particles themselves and the free dissolved silver ions (Ag(+)) to the observed effects. High concentrations of chloride ions (Cl(-)) in the routinely used exposure media can cause precipitation of Ag(+) as AgCl, as well as complexation of silver in diverse soluble chlorocomplexes, thus masking the contribution of dissolved silver to AgNP toxicity. In the present study, we formulated a zebrafish exposure medium with a low chloride content and exposed zebrafish embryos to AgNO3 or carbonate-coated AgNP. The severity of toxicity caused by both silver forms depended on the time of exposure start, with younger embryos being most sensitive. Toxicity caused by both AgNO3 and AgNP was of the same order of magnitude when compared based on the total dissolved silver concentration and could be prevented by addition of the Ag(+) chelator cysteine. Further, we have analyzed the data from several previous studies to evaluate the influence of interactions between Ag(+) and Cl(-) on silver toxicity to zebrafish embryos. Our analysis demonstrates that the acute toxicity of AgNP to zebrafish embryos is largely mediated by Ag(+). The influence of particle size and coating can at least partially be explained by the differences in Ag(+) dissolution. High Cl(-) levels in the exposure medium indeed have a pivotal influence on the resulting toxicity of AgNP, appearing to significantly attenuate toxicity in several studies. This consideration should influence the choice of exposure medium to be used when evaluating and comparing AgNP toxicity.


Subject(s)
Chlorides/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Chlorides/chemistry , Cysteine/chemistry , Embryo, Nonmammalian/drug effects , Lethal Dose 50 , Metal Nanoparticles/chemistry , Silver/chemistry , Toxicity Tests, Acute , Zebrafish/embryology
2.
PLoS One ; 7(9): e45872, 2012.
Article in English | MEDLINE | ID: mdl-23049882

ABSTRACT

Pattern-oriented modeling (POM) is a general strategy for modeling complex systems. In POM, multiple patterns observed at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key processes, and for calibration. So far, POM has been used for developing new models and for models of low to moderate complexity. It remains unclear, though, whether the basic idea of POM to utilize multiple patterns, could also be used to test and possibly develop existing and established models of high complexity. Here, we use POM to test, calibrate, and further develop an existing agent-based model of the field vole (Microtus agrestis), which was developed and tested within the ALMaSS framework. This framework is complex because it includes a high-resolution representation of the landscape and its dynamics, of the individual's behavior, and of the interaction between landscape and individual behavior. Results of fitting to the range of patterns chosen were generally very good, but the procedure required to achieve this was long and complicated. To obtain good correspondence between model and the real world it was often necessary to model the real world environment closely. We therefore conclude that post-hoc POM is a useful and viable way to test a highly complex simulation model, but also warn against the dangers of over-fitting to real world patterns that lack details in their explanatory driving factors. To overcome some of these obstacles we suggest the adoption of open-science and open-source approaches to ecological simulation modeling.


Subject(s)
Arvicolinae/physiology , Ecosystem , Animals , Computer Simulation , Ecology , Environment , Female , Geographic Information Systems , Geography , Male , Models, Biological , Pattern Recognition, Automated , Population Dynamics
3.
PLoS One ; 6(7): e22834, 2011.
Article in English | MEDLINE | ID: mdl-21829528

ABSTRACT

BACKGROUND: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. METHODOLOGY/PRINCIPAL FINDINGS: By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. SIGNIFICANCE: There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics.


Subject(s)
Arvicolinae/physiology , Environment , Predatory Behavior/physiology , Animals , Computer Simulation , Ecosystem , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...