Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Andrology ; 12(4): 809-820, 2024 May.
Article in English | MEDLINE | ID: mdl-37840240

ABSTRACT

BACKGROUND: Penile squamous cell carcinoma (PSCC) is a rare disease that is more prevalent in developing countries, such as Brazil, and is linked to poor genital hygiene, which promotes the proliferation of microorganisms. Dysbiosis has an effect on the local immune response, increases the risk of viral infection, and can generate inflammatory processes. Current knowledge of the microbiota found in penile tissues is limited, and the bacterial diversity of the PSCC remains unknown. In this investigation, the microbiota associated with penile cancer and its potential role in tumor development and progression were identified. METHODS: The 16S rRNA gene was analyzed by next-generation sequencing in 19 tumors and their respective non-tumor adjacent tissues to perform taxonomic classification, analysis of core microbiome, abundance, and diversity of amplicon sequence variants (ASVs) (QIIME2 v.2020.2), and in silico functional prediction (PICRUST2, p < 0.05). RESULTS: In both tissues, the phyla Proteobacteria and Firmicutes, and genera Alcaligenes and Fusobaterium, were the most prevalent. Tumors presented a greater relative abundance of Fusobacteriota, Campilobacteria, and Fusobacterium (p = 0.04, p = 0.04, and p = 0.039, respectively). In addition, the beta diversity analysis revealed a tendency for the formation of two distinct groups when only advanced tumors (pT2 and pT3) were considered. Further, the functional analysis identified the top 35 pathways, and 79.5% of PSCC samples contained pro-inflammatory microorganisms. CONCLUSION: We describe the first microbiome of penile carcinoma, which revealed an abundant and diverse microbiota as well as inflammatory-related taxa (the phyla Proteobacteria and Firmicutes, the genera Fusobacterium and Prevotella, and the species Finegoldia magma and Pseudomonas geniculata) and molecular pathways (chitin derivates degradation, the protocatechuic acid pathway, inositol metabolism, and the sucrose pathway), which have also been linked to inflammation and carcinogenesis. Moreover, we found specific and abundant ASVs in both tumor and non-tumor tissues. Our data encourage further study to better understand the role of these microorganisms in penile carcinogenesis, offering an opportunity for advances in diagnosis, prognosis, and early therapy.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Penile Neoplasms , Male , Humans , Human Papillomavirus Viruses , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics , Carcinogenesis
2.
Environ Sci Pollut Res Int ; 29(51): 77359-77374, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35675015

ABSTRACT

Photosynthetic microorganisms are important components of most ecosystems and have important roles regarding biogeochemical cycles and the basis of the trophic chain. However, they sometimes are present in low abundance compared to other heterotrophic organisms. The Chapada das Mesas National Park (PNCM) is a Conservation Unit in Brazilian Cerrado biome, which is considered a hotspot for biodiversity conservation and possesses important rivers, waterfalls, and springs with economical and touristic importance. The aim of this study was to perform a comparative analysis of enriched and total microbiome of sediments to understand the impact of pre-cultivation in discovery of underrepresented groups like photosynthesizers. All sediment samples were cultivated in BG-11 medium under illumination to enrich for photosynthetic microorganisms and both the raw samples and the enriched ones were submitted to DNA extraction and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene on the Ion Torrent platform. The reads were analyzed using QIIME2 software and the Phyloseq package. The enrichment allowed detection and identification of many genera of cyanobacteria in the Chapada das Mesas National Park (PNCM), which would probably not be possible without the combination of approaches. A total of 58 groups of photosynthetic microorganisms were classified in the samples from the enrichments and their relative abundance based on amplified 16S rRNA sequences were estimated, highlighting the genus Synechocystis which represented 10.10% of the abundance of the phylum Cyanobacteria and the genus Dunaliella, which represented 45.66% of the abundance of algae as the most abundant groups at the PNCM. In the enrichments, microorganisms from the phyla Proteobacteria (45.2%), Bacteroidetes (18%), and Planctomycetes (3.3%) were also identified, since there are ecological associations between the photosynthetic community and other groups of heterotrophic microorganisms. As for the functional analysis, metabolic functions associated with methanotrophy and methylotrophy, hydrocarbon degradation, phototrophy, and nitrogen fixation were predicted. The results highlight a great diversity of photosynthetic microorganisms in Cerrado and the importance of using a combination of approaches when analyzing target groups which are usually underrepresented such as cyanobacteria and microalgae.


Subject(s)
Biodiversity , Microbiota , RNA, Ribosomal, 16S/genetics , Brazil , Hydrocarbons , DNA , Phylogeny
3.
Front Ecol Evol, v. 9, 639852, jun. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3894

ABSTRACT

Cyanobacteria comprise one of the oldest and most diverse phyla in the Bacteria domain and are recognized for their importance in the biosphere evolution. Members of this phylum can be found in a wide variety of environments reflecting their photosynthetic ability, adaptability to various environmental conditions, and diversified metabolism. Such characteristics make cyanobacteria one of the preferred targets for research on bioactive compounds and new enzymes (Schirrmeister et al., 2011; Dittmann et al., 2015). Pantanalinema was described as a new genus of the Leptolyngbyaceae cyanobacterial family by a polyphasic approach, which included morphological characteristics, 16S rRNA gene phylogeny, 16S-23S ITS rRNA secondary structures, and physiological characteristics such as adaptability to pH variations (Vaz et al., 2015). This genus has been described only in Brazilian biomes such as the Pantanal and the Amazon, the first isolates being found in a lake. These Pantanalinema isolates were characterized by their ability to grow over a wide pH range (pH 4 to 11) as well as to modify the culture medium pH around neutrality (pH 6 to 7.4). Due to these characteristics, it is thought that this genus can occupy a variety of ecological niches, such as alkaline or slightly acidic water bodies (Vaz et al., 2015; Genuário et al., 2017). Taxonomic classification of Pantanalinema isolates requires the use of molecular markers as this genus is morphologically very similar to the recently described genus Amazoninema, which, in turn, has comparable morphology to other genera of the Leptolyngbyaceae family (Genuário et al., 2018). In this work, we report the genome sequence of a new Pantanalinema strain, named GBBB05, which was isolated from the Brazilian Cerrado biome. This is the first genome assembly for the Pantanalinema genus, which, along with the analyses provided here, is expected to enhance our understanding of this genus’s metabolic potential

4.
Genome Announc ; 4(3)2016 May 19.
Article in English | MEDLINE | ID: mdl-27198020

ABSTRACT

Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT.

5.
Genome Announc ; 4(2)2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26988062

ABSTRACT

Here, we report the draft genome sequence of "Acidibacillus ferrooxidans" strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil.

6.
BioData Min ; 8: 21, 2015.
Article in English | MEDLINE | ID: mdl-26180552

ABSTRACT

BACKGROUND: Microbial communities adapt to environmental conditions for optimizing metabolic flux. Such adaption may include cooperative mechanisms eventually resulting in phenotypic observables as emergent properties that cannot be attributed to an individual species alone. Understanding the molecular basis of cross-species cooperation adds to utilization of microbial communities in industrial applications including metal bioleaching and bioremediation processes. With significant advancements in metagenomics the composition of microbial communities became amenable for integrative analysis on the level of entangled molecular processes involving more than one species, in turn offering a data matrix for analyzing the molecular basis of cooperative phenomena. METHODS: We present an analysis framework aligned with a dynamical hierarchies concept for unraveling emergent properties in microbial communities, and exemplify this approach for a co-culture setting of At. ferrooxidans and At. thiooxidans. This minimum microbial community demonstrates a significant increase in bioleaching efficiency compared to the activity of individual species, involving mechanisms of the thiosulfate, the polysulfide and the iron oxidation pathway. RESULTS: Populating gene-centric data structures holding rich functional annotation and interaction information allows deriving network models at the functional level coupling energy production and transport processes of both microbial species. Applying a network segmentation approach on the interaction network of ortholog genes covering energy production and transport proposes a set of specific molecular processes of relevance in bioleaching. The resulting molecular process model essentially involves functionalities such as iron oxidation, nitrogen metabolism and proton transport, complemented by sulfur oxidation and nitrogen metabolism, as well as a set of ion transporter functionalities. At. ferrooxidans-specific genes embedded in the molecular model representation hold gene functions supportive for ammonia utilization as well as for biofilm formation, resembling key elements for effective chalcopyrite bioleaching as emergent property in the co-culture situation. CONCLUSIONS: Analyzing the entangled molecular processes of a microbial community on the level of segmented, gene-centric interaction networks allows identification of core molecular processes and functionalities adding to our mechanistic understanding of emergent properties of microbial consortia.

7.
BMC Genomics ; 15: 986, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25407400

ABSTRACT

BACKGROUND: Exiguobacterium antarcticum strain B7 is a Gram-positive psychrotrophic bacterial species isolated in Antarctica. Although this bacteria has been poorly studied, its genome has already been sequenced. Therefore, it is an appropriate model for the study of thermal adaptation. In the present study, we analyzed the transcriptomes and proteomes of E. antarcticum B7 grown at 0°C and 37°C by SOLiD RNA-Seq, Ion Torrent RNA-Seq and two-dimensional difference gel electrophoresis tandem mass spectrometry (2D-DIGE-MS/MS). RESULTS: We found expression of 2,058 transcripts in all replicates from both platforms and differential expression of 564 genes (absolute log2FC≥1, P-value<0.001) comparing the two temperatures by RNA-Seq. A total of 73 spots were differentially expressed between the two temperatures on 2D-DIGE, 25 of which were identified by MS/MS. Some proteins exhibited patterns of dispersion in the gel that are characteristic of post-translational modifications. CONCLUSIONS: Our findings suggest that the two sequencing platforms yielded similar results and that different omic approaches may be used to improve the understanding of gene expression. To adapt to low temperatures, E. antarcticum B7 expresses four of the six cold-shock proteins present in its genome. The cold-shock proteins were the most abundant in the bacterial proteome at 0°C. Some of the differentially expressed genes are required to preserve transcription and translation, while others encode proteins that contribute to the maintenance of the intracellular environment and appropriate protein folding. The results denote the complexity intrinsic to the adaptation of psychrotrophic organisms to cold environments and are based on two omic approaches. They also unveil the lifestyle of a bacterial species isolated in Antarctica.


Subject(s)
Adaptation, Physiological/genetics , Bacillaceae/genetics , Bacillaceae/physiology , Cold Temperature , Gene Expression Regulation, Bacterial , Genomics/methods , Bacillaceae/growth & development , Cell Membrane/metabolism , Cold Shock Proteins and Peptides/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Mass Spectrometry , Protein Biosynthesis , Protein Folding , Proteome/metabolism , Sequence Analysis, RNA , Transcription, Genetic
8.
J Bacteriol ; 194(23): 6689-90, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23144424

ABSTRACT

Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e.g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.


Subject(s)
Bacillales/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Antarctic Regions , Bacillales/isolation & purification , Bacillales/physiology , Biofilms/growth & development , Fresh Water/microbiology , Islands , Lakes , Molecular Sequence Data
9.
Bioinformation ; 8(11): 529-31, 2012.
Article in English | MEDLINE | ID: mdl-22829724

ABSTRACT

UNLABELLED: The vast amount of data produced by next-generation sequencing (NGS) has necessitated the development of computational tools to assist in understanding the myriad functions performed by the biological macromolecules involved in heredity. In this work, we developed the FunSys programme, a stand-alone tool with an user friendly interface that enables us to evaluate and correlate differential expression patterns from RNA sequencing and proteomics datasets. The FunSys generates charts and reports based on the results of the analysis of differential expression to aid the interpretation of the results. AVAILABILITY: The database is available for free at https://sourceforge.net/projects/funsysufpa/

SELECTION OF CITATIONS
SEARCH DETAIL
...