Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506203

ABSTRACT

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Subject(s)
Axons , Nerve Regeneration , Neurons , Peripheral Nerve Injuries , Adult , Humans , Axons/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Interneurons/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism
2.
J Neurosci ; 42(43): 8054-8065, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36096668

ABSTRACT

The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.


Subject(s)
Axon Initial Segment , Axons , Male , Female , Mice , Animals , Axons/physiology , Axon Initial Segment/metabolism , Ankyrins/metabolism , Nerve Regeneration , Synapses/metabolism , Ion Channels/metabolism , Motor Neurons/metabolism , RNA, Messenger/metabolism
3.
RNA ; 28(3): 433-446, 2022 03.
Article in English | MEDLINE | ID: mdl-34949721

ABSTRACT

Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.


Subject(s)
Fluorescent Antibody Technique/methods , In Situ Hybridization, Fluorescence/methods , RNA/metabolism , Cells, Cultured , Fixatives/chemistry , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Nanoparticles/chemistry , RNA/chemistry , RNA Processing, Post-Transcriptional , RNA Transport
4.
Nat Rev Neurosci ; 22(2): 77-91, 2021 02.
Article in English | MEDLINE | ID: mdl-33288912

ABSTRACT

Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.


Subject(s)
Axonal Transport , RNA, Messenger , Animals , Humans
5.
EMBO J ; 39(6): e102513, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32073171

ABSTRACT

Various species of non-coding RNAs (ncRNAs) are enriched in specific subcellular compartments, but the mechanisms orchestrating their localization and their local functions remain largely unknown. We investigated both aspects using the elongating retinal ganglion cell axon and its tip, the growth cone, as models. We reveal that specific endogenous precursor microRNAs (pre-miRNAs) are actively trafficked to distal axons by hitchhiking primarily on late endosomes/lysosomes. Upon exposure to the axon guidance cue semaphorin 3A (Sema3A), pre-miRNAs are processed specifically within axons into newly generated miRNAs, one of which, in turn, silences the basal translation of tubulin beta 3 class III (TUBB3), but not amyloid beta precursor protein (APP). At the organismal level, these mature miRNAs are required for growth cone steering and a fully functional visual system. Overall, our results uncover a novel mode of ncRNA transport from one cytosolic compartment to another within polarized cells. They also reveal that newly generated miRNAs are critical components of a ncRNA-based signaling pathway that transduces environmental signals into the structural remodeling of subcellular compartments.


Subject(s)
MicroRNAs/genetics , RNA, Untranslated/genetics , Signal Transduction , Animals , Axons/physiology , Biological Transport , Endosomes/metabolism , Female , Growth Cones/physiology , Mice, Inbred C57BL , RNA Precursors/genetics , Retinal Ganglion Cells/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...