Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 23066-23085, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475400

ABSTRACT

In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available from Zenodo (http://dx.doi.org/10.5281/zenodo.7978514).

2.
Sensors (Basel) ; 22(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36560159

ABSTRACT

Hyperspectral imaging has been attracting considerable interest as it provides spectrally rich acquisitions useful in several applications, such as remote sensing, agriculture, astronomy, geology and medicine. Hyperspectral devices based on compressive acquisitions have appeared recently as an alternative to conventional hyperspectral imaging systems and allow for data-sampling with fewer acquisitions than classical imaging techniques, even under the Nyquist rate. However, compressive hyperspectral imaging requires a reconstruction algorithm in order to recover all the data from the raw compressed acquisition. The reconstruction process is one of the limiting factors for the spread of these devices, as it is generally time-consuming and comes with a high computational burden. Algorithmic and material acceleration with embedded and parallel architectures (e.g., GPUs and FPGAs) can considerably speed up image reconstruction, making hyperspectral compressive systems suitable for real-time applications. This paper provides an in-depth analysis of the required performance in terms of computing power, data memory and bandwidth considering a compressive hyperspectral imaging system and a state-of-the-art reconstruction algorithm as an example. The results of the analysis show that real-time application is possible by combining several approaches, namely, exploitation of system matrix sparsity and bandwidth reduction by appropriately tuning data value encoding.


Subject(s)
Data Compression , Feasibility Studies , Algorithms , Physical Phenomena
3.
J Acoust Soc Am ; 143(5): 2834, 2018 05.
Article in English | MEDLINE | ID: mdl-29857733

ABSTRACT

The work presented in this paper focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality for fish populations. Specifically, it focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality for fish populations. To this end, various indicators can be used to monitor marine areas such as both the geographical and temporal evolution of fish populations. A discriminative model is built using supervised machine learning (random-forest and support-vector machines). Each acquisition is represented in a feature space, in which the patterns belonging to different semantic classes are as separable as possible. The set of features proposed for describing the acquisitions come from an extensive state of the art in various domains in which classification of acoustic signals is performed, including speech, music, and environmental acoustics. Furthermore, this study proposes to extract features from three representations of the data (time, frequency, and cepstral domains). The proposed classification scheme is tested on real fish sounds recorded on several areas, and achieves 96.9% correct classification compared to 72.5% when using reference state of the art features as descriptors. The classification scheme is also validated on continuous underwater recordings, thereby illustrating that it can be used to both detect and classify fish sounds in operational scenarios.


Subject(s)
Machine Learning/classification , Sound , Vocalization, Animal/physiology , Acoustics , Animals , Fishes
4.
IEEE Trans Image Process ; 27(9): 4330-4344, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29870351

ABSTRACT

Pansharpening is an important application in remote sensing image processing. It can increase the spatial-resolution of a multispectral image by fusing it with a high spatial-resolution panchromatic image in the same scene, which brings great favor for subsequent processing such as recognition, detection, etc. In this paper, we propose a continuous modeling and sparse optimization based method for the fusion of a panchromatic image and a multispectral image. The proposed model is mainly based on reproducing kernel Hilbert space (RKHS) and approximated Heaviside function (AHF). In addition, we also propose a Toeplitz sparse term for representing the correlation of adjacent bands. The model is convex and solved by the alternating direction method of multipliers which guarantees the convergence of the proposed method. Extensive experiments on many real datasets collected by different sensors demonstrate the effectiveness of the proposed technique as compared with several state-of-the-art pansharpening approaches.

5.
IEEE Trans Image Process ; 26(4): 1859-1872, 2017 04.
Article in English | MEDLINE | ID: mdl-28182557

ABSTRACT

Morphological attribute profiles are multilevel decompositions of images obtained with a sequence of transformations performed by connected operators. They have been extensively employed in performing multi-scale and region-based analysis in a large number of applications. One main, still unresolved, issue is the selection of filter parameters able to provide representative and non-redundant threshold decomposition of the image. This paper presents a framework for the automatic selection of filter thresholds based on Granulometric Characteristic Functions (GCFs). GCFs describe the way that non-linear morphological filters simplify a scene according to a given measure. Since attribute filters rely on a hierarchical representation of an image (e.g., the Tree of Shapes) for their implementation, GCFs can be efficiently computed by taking advantage of the tree representation. Eventually, the study of the GCFs allows the identification of a meaningful set of thresholds. Therefore, a trial and error approach is not necessary for the threshold selection, automating the process and in turn decreasing the computational time. It is shown that the redundant information is reduced within the resulting profiles (a problem of high occurrence, as regards manual selection). The proposed approach is tested on two real remote sensing data sets, and the classification results are compared with strategies present in the literature.

6.
IEEE Trans Image Process ; 25(6): 2882-2895, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28113904

ABSTRACT

Nonlinear decomposition schemes constitute an alternative to classical approaches for facing the problem of data fusion. In this paper, we discuss the application of this methodology to a popular remote sensing application called pansharpening, which consists in the fusion of a low resolution multispectral image and a high-resolution panchromatic image. We design a complete pansharpening scheme based on the use of morphological half gradient operators and demonstrate the suitability of this algorithm through the comparison with the state-of-the-art approaches. Four data sets acquired by the Pleiades, Worldview-2, Ikonos, and Geoeye-1 satellites are employed for the performance assessment, testifying the effectiveness of the proposed approach in producing top-class images with a setting independent of the specific sensor.

7.
IEEE Trans Image Process ; 23(8): 3574-3589, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24951694

ABSTRACT

The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear spectral unmixing consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Spectrum Analysis/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...