Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 34: 101540, 2020 07.
Article in English | MEDLINE | ID: mdl-32428845

ABSTRACT

The (seleno)cysteine residues in some protein families react with hydroperoxides with rate constants far beyond those of fully dissociated low molecular weight thiol or selenol compounds. In case of the glutathione peroxidases, we could demonstrate that high rate constants are achieved by a proton transfer from the chalcogenol to a residue of the active site [Orian et al. Free Radic. Biol. Med. 87 (2015)]. We extended this study to three more protein families (OxyR, GAPDH and Prx). According to DFT calculations, a proton transfer from the active site chalcogenol to a residue within the active site is a prerequisite for both, creating a chalcogenolate that attacks one oxygen of the hydroperoxide substrate and combining the delocalized proton with the remaining OH or OR, respectively, to create an ideal leaving group. The "parking postions" of the delocalized proton differ between the protein families. It is the ring nitrogen of tryptophan in GPx, a histidine in GAPDH and OxyR and a threonine in Prx. The basic principle, however, is common to all four families of proteins. We, thus, conclude that the principle outlined in this investigation offers a convincing explanation for how a cysteine residue can become peroxidatic.


Subject(s)
Cysteine , Selenocysteine , Catalytic Domain , Glutathione Peroxidase/metabolism , Hydrogen Peroxide , Peroxides , Peroxiredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...