Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Implants Res ; 30(1): 99-110, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30521101

ABSTRACT

OBJECTIVE: The main objective of this study was to demonstrate that dental implants made from ultrafine-grain titanium (UFG-Ti) can be created that replicate state of the art surfaces of standard coarse-grain titanium (Ti), showing excellent cytocompatibility and osseointegration potential while also providing improved mechanical properties. MATERIAL AND METHODS: UFG-Ti was prepared by continuous equal channel angular processing (ECAP), and surfaces were treated by sandblasting and acid etching. Mechanical properties (tensile and fatigue strength), wettability, and roughness parameters were evaluated. Human trabecular bone-derived osteoblast precursor cells (HBCs) were cultured on all samples to examine cytocompatibility and mineralization after 4 and 28 days, respectively. Biomechanical pull-out measurements were performed in a rabbit in vivo model 4 weeks after implantation. RESULTS: Both yield and tensile strength as well as fatigue endurance were higher for UFG-Ti compared to Ti by 40%, 45%, and 34%, respectively. Fatigue endurance was slightly reduced following surface treatment. Existing surface treatment protocols could be applied to UFG-Ti and resulted in similar roughness and wettability as for standard Ti. Cell attachment and spreading were comparable on all samples, but mineralization was higher for the surfaces with hydrophilic treatment with no significant difference between UFG-Ti and Ti. Pull-out tests revealed that osseointegration of surface-treated UFG-Ti was found to be similar to that of surface-treated Ti. CONCLUSION: It could be demonstrated that existing surface treatments for Ti can be translated to UFG-Ti and, furthermore, that dental implants made from surface-treated UFG-Ti exhibit superior mechanical properties while maintaining cytocompatibility and osseointegration potential.


Subject(s)
Bone-Anchored Prosthesis , Dental Implants , Titanium , Animals , Blood Coagulation , Calcium/analysis , Cell Communication , Cells, Cultured , Fluorescent Antibody Technique , Microscopy, Electron, Scanning , Osseointegration , Osteoblasts/physiology , Rabbits , Surface Properties , Tensile Strength
2.
Nanoscale ; 1(3): 374-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20648276

ABSTRACT

We present a method where epsilon-cobalt nanoparticles with an average diameter of 4.5 nm can be synthesized in a controlled process and in significantly larger quantities than previously reported in the literature, based on the thermal decomposition of dicobaltoctacarbonyl in the presence of oleic acid and trioctylphosphine oxide (TOPO). Moreover, since the resulting particles are coated with an oleate layer, as shown by infrared (IR) spectroscopy, the colloids can be re-dispersed in organic solvents. These dispersions are suitable for the preparation of nanocomposites by a simple procedure, i.e. mixing of the cobalt dispersion with a polymer solution followed by casting and solvent evaporation. Magnetization measurements confirm the expected superparamagnetic behavior for both the cobalt nanoparticles and the metal-polymer nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...