Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31708874

ABSTRACT

In bone diseases such as osteonecrosis and osteoporosis, a shift toward a preferential differentiation of mesenchymal stromal cells (MSC) into adipocytes at the expense of the osteoblastic lineage is described, leading to excessive accumulation of adipocytes in the bone marrow of the patients. The influence of cytokines and adipokines secreted by adipocytes on skeletal health is already well-documented but the impact of free fatty acids release on bone cell biology and viability is an emerging concept. We have previously demonstrated that the saturated fatty acid (SFA) palmitate (Palm) is cytotoxic for human MSC (hMSC) and osteoblasts whereas oleate (Ole), a monounsaturated fatty acid (MUFA), has no toxic effect. Moreover, Ole protects cells against lipotoxicity. Our observations led us to propose that the toxicity of the SFA is not correlated to its intracellular accumulation but could rather be related to the intracellular SFA/MUFA ratio, which finally determines the toxic effect of SFA. Therefore, in the present study, we have investigated the potential protective role of the enzyme stearoyl-CoA 9-desaturase 1 (SCD1) against the deleterious effects of Palm. SCD1 is an enzyme responsible for desaturation of SFA to MUFA; its activation could therefore lead to modifications of the intracellular SFA/MUFA ratio. In the present study, we showed that hMSC express SCD1 and liver X receptors (LXRs), transcription factors regulating SCD1 expression. Human MSC treatment with a LXRs agonist triggered SCD1 expression and drastically reduced Palm-induced cell mortality, caspases 3/7 activation, endoplasmic reticulum stress and inflammation. We also observed that, in the presence of Palm, the LXRs agonist provoked lipid droplets formation, augmented the total cellular neutral lipid content but decreased the SFA/MUFA ratio when compared to Palm treatment alone. Addition of an inhibitor of SCD1 activity abrogated the positive effects of the LXRs agonist, suggesting that SCD1 could play a key role in protecting hMSC against lipotoxicity.

2.
Endocrinology ; 158(3): 490-502, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28359085

ABSTRACT

Osteonecrosis of the femoral head (ON) is a multifactorial bone disease that can evolve to a progressive destruction of the hip joint. Different pathogenic processes have been proposed, among them, an increase of bone marrow (BM) fat resulting from adipocyte accumulation. Marrow adipocytes are active BM residents that influence the microenvironment by releasing cytokines, adipokines, and free fatty acids (FA). We explored the impact of palmitate (Palm) and oleate on function and survival of BM-derived mesenchymal stromal cells (MSC) of osteonecrotic patients (ONMSC) and healthy volunteers. Moreover, we analyzed the FA profile of the serum and the BM supernatant fluid (BMSF). We demonstrated that exposure to the saturated FA Palm favored MSC differentiation through the adipogenic lineage at the expense of the osteoblastic phenotype. Moreover, adipogenesis was intensified in ONMSC. The susceptibility to Palm toxicity was aggravated in ONMSC concomitantly with a greater activation of the proapoptotic extracellular signal-regulated kinase pathway. Moreover, cellular mechanisms implicated in the protection against lipotoxicity, such as stearoyl-coenzyme A desaturase 1 and carnitine palmitoyl transferase 1 expression, were dysregulated in ONMSC. Palm-induced interleukin (IL)-6 and IL-8 secretion was also exacerbated in ONMSC. Our results established that, in the serum, the FA profiles were comparable in ON and healthy subjects. However, both the concentrations and the FA composition were modified in the BMSF of ON patients, highlighting a drastic change of the BM microenvironment in ON patients. Altogether, our work suggests that marrow adipocyte enlargement could affect the process of bone remodeling and, therefore, play a role in the pathogenesis of ON.


Subject(s)
Bone Marrow/metabolism , Femur Head Necrosis/blood , Mesenchymal Stem Cells/drug effects , Oleic Acid/toxicity , Palmitic Acid/toxicity , Adipogenesis/drug effects , Adult , Case-Control Studies , Female , Humans , MAP Kinase Signaling System , Male , Oleic Acid/blood , Palmitic Acid/blood
3.
Stem Cells ; 33(1): 211-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25183652

ABSTRACT

Human mesenchymal stem cells (hMSC) are multipotent cells derived from various sources including adipose and placental tissues as well as bone marrow. Owing to their regenerative and immunomodulatory properties, their use as a potential therapeutic tool is being extensively tested. However, one of the major hurdles in using cell-based therapy is the use of fetal bovine serum that can trigger immune responses, viral and prion diseases. The development of a culture medium devoid of serum while preserving cell viability is therefore a major challenge. In this study, we demonstrated that adenosine triphosphate (ATP) restrained serum deprivation-induced cell death in hMSC by preventing caspases 3/7 activation and modulating ERK1/2 and p38 MAPK signaling pathways. We also showed that serum deprivation conditions triggered dephosphorylation of the proapoptotic protein Bad leading to cell death. Adjunction of ATP restored the phosphorylation state of Bad. Furthermore, ATP significantly modulated the expression of proapoptopic and antiapoptotic genes, in favor of an antiapoptotic profile expression. Finally, we established that hMSC released a high amount of ATP in the extracellular medium when cultured in a serum-free medium. Collectively, our results demonstrate that ATP favors hMSC viability in serum deprivation conditions. Moreover, they shed light on the cardinal role of the MAPK pathways, ERK1/2 and p38 MAPK, in promoting hMSC survival.


Subject(s)
Adenosine Triphosphate/pharmacology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Adolescent , Adult , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Culture Media, Serum-Free , Humans , Mesenchymal Stem Cells/enzymology , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...