Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(23): 26186-26200, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857355

ABSTRACT

Surface plasmon polariton (SPP) beams with an in-plane angular spread of 8° are produced by electrically exciting a 2D plasmonic crystal using a scanning tunneling microscope (STM). The plasmonic crystal consists of a gold nanoparticle (NP) array on a thin gold film on a glass substrate and it is the inelastic tunnel electrons (IET) from the STM that provide a localized and spectrally broadband SPP source. Surface waves on the gold film are shown to be essential for the coupling of the local, electrical excitation to the extended NP array, thus leading to the creation of SPP beams. A simple model of the scattering of SPPs by the array is used to explain the origin and direction of the generated SPP beams under certain conditions. In order to take into account the broadband spectrum of the source, calculations realized using finite-difference time-domain (FDTD) methods are obtained, showing that bandgaps for SPP propagation exist for certain wavelengths and indicating how changing the pitch of the NP array may enhance the SPP beaming effect.

2.
Anal Chem ; 88(7): 3804-9, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26974586

ABSTRACT

We report herein the fabrication of novel microarrays based on air-stable functional lipid monolayers over silicon using a combination of e-beam lithography and lift-off. We demonstrate these microarrays can be use as ultrasensitive platform for Kelvin probe force microscopy in sensing experiments. Specificity of the detection is given by the functional group grafted at the lipid headgroup. The arrays developed for the detection of ferric ions, Fe(3+), using a γ-pyrone derivative chelator, demonstrate subpicomolar limit of detection with high specificity. In addition, the technique takes advantage of the structure of the array with the silicon areas playing the role of reference for the measurement, and we determine critical pattern dimensions below which the probe size/shape impacts the measured results.


Subject(s)
Iron/analysis , Membranes, Artificial , Microarray Analysis/instrumentation , Diynes/chemistry , Limit of Detection , Phosphatidylcholines/chemistry , Pyrones/chemistry , Silicon/chemistry
3.
Opt Lett ; 39(16): 4723-6, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121858

ABSTRACT

The diffractive behavior of arrays of square coaxial apertures in a gold layer is studied. These structures exhibit a resonant transmission enhancement that is used to design tunable bandpass filters for multispectral imaging in the 7-13 µm wavelength range. A modal analysis is used for this design and the study of their spectral features. Thus we show that the resonance peak is due to the excitation of leaky modes of the open photonic structure. Fourier transform infrared (FTIR) spectrophotometry transmission measurements of samples deposited on Si substrate show good agreement with numerical results and demonstrate angular tolerance of up to 30 degrees of the fabricated filters.

4.
Biosens Bioelectron ; 54: 571-7, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24333568

ABSTRACT

Field effect transistors have risen as one of the most promising techniques in the development of biomedical diagnosis and monitoring. In such devices, the sensitivity and specificity of the sensor rely on the properties of the active sensing layer (gate dielectric and probe layer). We propose here a new type of transistor developed for the detection of Fe(3+) ions in which this sensing layer is made of a monolayer of lipids, engineered in such a way that it is not sensitive to pH in the acidic range, therefore making the device perfectly suitable for biomedical diagnosis. Probes are γ-pyrone derivatives that have been grafted to the lipid headgroups. Affinity constants derived for the chelator/Fe(3+) complexation as well as for other ions demonstrate very high sensitivity and specificity towards ferric ions with values as high as 5.10(10) M and a detected concentration as low as 50 fM.


Subject(s)
Biosensing Techniques/instrumentation , Ferric Compounds/analysis , Iron/analysis , Lipids/chemistry , Pyrones/chemistry , Transistors, Electronic , Cations/analysis , Sensitivity and Specificity
5.
J Mater Chem B ; 1(4): 443-446, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-32260814

ABSTRACT

An innovative MOS-type field effect transistor was developed for the electrical detection of ferric ions. The sensing assays clearly show a specific detection with a gate-source voltage shift of up to 200 mV and a wide linear detection range (5 × 10-14 to 5 × 10-5 M) associated with good stability, selectivity and reproducibility.

6.
Opt Express ; 20(25): 27941-52, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23262740

ABSTRACT

We examine the excitation of plasmonic resonances in arrays of periodically arranged gold nanoparticles placed in a uniform refractive index environment. Under a proper periodicity of the nanoparticle lattice, such nanoantenna arrays are known to exhibit narrow resonances with asymmetric Fano-type spectral line shape in transmission and reflection spectra having much better resonance quality compared to the single nanoparticle case. Using numerical simulations, we first identify two distinct regimes of lattice response, associated with two-characteristic states of the spectra: Rayleigh anomaly and lattice plasmon mode. The evolution of the electric field pattern is rigorously studied for these two states revealing different configurations of optical forces: the first regime is characterized by the concentration of electric field between the nanoparticles, yielding to almost complete transparency of the array, whereas the second regime is characterized by the concentration of electric field on the nanoparticles and a strong plasmon-related absorption/scattering. We present electric field distributions for different spectral positions of Rayleigh anomaly with respect to the single nanoparticle resonance and optimize lattice parameters in order to maximize the enhancement of electric field on the nanoparticles. Finally, by employing collective plasmon excitations, we explore possibilities for electric field enhancement in the region between the nanoparticles. The presented results are of importance for the field enhanced spectroscopy as well as for plasmonic bio and chemical sensing.


Subject(s)
Gold/chemistry , Models, Theoretical , Nanostructures/chemistry , Nanotechnology/methods , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Electromagnetic Fields , Electrons , Scattering, Radiation , Surface Plasmon Resonance/methods
7.
J Phys Chem B ; 116(24): 7190-5, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22657565

ABSTRACT

We study the effect of polymerization on the nanomechanical stability of supported lipid monolayers consisting of 1,2-di-(10Z,12Z-tricosadiynoyl)-sn-glycero-3-phosphocholine by means of force mapping using an atomic force microscope. For both nonpolymerized and polymerized lipid monolayers, we investigate the break-through forces required to rupture the monolayers for a whole range of loading velocities. We show that the average break-through force exerted by the tip and required to penetrate the monolayer has a logarithmic dependence on the loading rate. Both Young moduli and intrinsic Gibbs energies have been determined for the nonpolymerized and polymerized lipid monolayers, and we show a drastic effect of polymerization on the nanomechanical stability of the monolayer with an increase by a factor of ∼100 for the young modulus and ∼3 for the intrinsic Gibbs activation energy.

8.
Langmuir ; 27(22): 13643-7, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21967619

ABSTRACT

The electrical performance of stabilized lipid monolayers on H-terminated silicon is reported for the first time. We show that these 2.7 nm thick only ultrathin layers present extremely low current leakage at high electric field and high breakdown voltage that both compare favorably with the best data reported on organic thin film dielectrics. We demonstrate a very unique property of autonomic self-healing of the layer at room temperature with the total recovery of its performance after electrical breakdown. The mechanisms involved in breakdown and self-healing are described.

SELECTION OF CITATIONS
SEARCH DETAIL
...