Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Clin Transl Sci ; 6(1): e42, 2022.
Article in English | MEDLINE | ID: mdl-35574153

ABSTRACT

Given the convergence of the long and challenging development path for medical devices with the need for diagnostic capabilities for mild traumatic brain injury (mTBI/concussion), the effective role of public-private partnership (PPP) can be demonstrated to yield Food and Drug Administration (FDA) clearances and innovative product introductions. An overview of the mTBI problem and landscape was performed. A detailed situation analysis of an example of a PPP yielding an innovative product was further demonstrated. The example of PPP has led to multiple FDA clearances and product introductions in the TBI diagnostic product category where there was an urgent military and public need. Important lessons included defining the primary public and military health objective for new product introduction, the importance of the government-academia-industry PPP triad with a "collaboration towards solutions" Quality-by-Design (QbD) mindset to assure clinical validity with regulatory compliance, the development of device comparators and integration of measurements into a robust, evidence-based statistical and FDA pathway, and the utility of top-down, flexible, practical action while operating within governmental guidelines and patient safety.

2.
Front Neurol ; 12: 699014, 2021.
Article in English | MEDLINE | ID: mdl-34526957

ABSTRACT

Objective: The current study seeks to illustrate potential early and objective neurophysiological biomarkers of neurodegenerative cognitive decline by evaluating features of brain network physiological performance and structure utilizing different modalities. Methods: This study included 17 clinically healthy individuals with self-reported cognitive decline (Subjective Cognitive Decline group, SCD, no objective finding of cognitive decline), 12 individuals diagnosed with amnestic Mild Cognitive Impairment (aMCI), 11 individuals diagnosed with Dementia, and 15 healthy subjects. All subjects underwent computerized cognitive performance testing, MRI scans including T1 for gray matter (GM) volume quantification, DTI for quantification of white matter (WM) microstructure fractional anisotropy (FA) and mean diffusivity (MD), and brain network function evaluation using DELPHI (TMS-EEG) measures of connectivity, excitability, and plasticity. Results: Both DELPHI analysis of network function and DTI analysis detected a significant decrease in connectivity, excitability, and WM integrity in the SCD group compared to healthy control (HC) subjects; a significant decrease was also noted for aMCI and Dementia groups compared to HC. In contrast, no significant decrease was observed in GM volume in the SCD group compared to healthy norms, a significant GM volume decrease was observed only in objectively cognitively impaired aMCI subjects and in dementia subjects. Conclusions: This study results suggest that objective direct measures of brain network physiology and WM integrity may provide early-stage biomarkers of neurodegenerative-related changes in subjects that have not yet displayed any other objective measurable cognitive or GM volume deficits which may facilitate early preventive care for neurodegenerative decline and dementia.

3.
Cureus ; 13(5): e14996, 2021 May 12.
Article in English | MEDLINE | ID: mdl-34007777

ABSTRACT

This study is a retrospective chart review of 200 clients who participated in a non-verbal restorative cognitive remediation training (rCRT) program between 2012 and 2020. Each client participated in the program for about 16 weeks, and the study as a whole occurred over a five-year period. The program was applied to effect proper neural functional remodeling needed to support resilient, flexible, and adaptable behaviors after encountering a mild closed head traumatic brain injury (mTBI). The rCRT program focused on improving functional performance in executive cognitive control networks as defined by fMRI studies. All rCRT activities were delivered in a semi-game-like manner, incorporating a brain-computer interface (BCI) that provided in-the-moment neural network performance integrity metrics (nPIMs) used to adjust the level of play required to properly engage long-term potentiation (LTP) and long-term depression (LTD) network learning rules. This study reports on t-test and Reliable Change Index (RCI) changes found within individual cognitive abilities' performance metrics derived from the Woodcock-Johnson Cognitive Abilities III Test. We compared pre- and post-scores from seven cognitive abilities considered dependent on executive cognitive control networks against seven non-executive control abilities. We observed significant improvements (p < 10-4) with large Cohen's deffect sizes (0.78-1.20) across 13 of 14 cognitive ability domains with a medium effect size (0.49) on the remaining one. The mean percent change for the pooled trained domain was double that observed for the pooled untrained domain, at 17.2% versus 8.3%, respectively. To further adjust for practice effects, practice effect RCI values were computed and further supported the effectiveness of the rCRT (trained RCI 1.4-4.8; untrained RCI 0.-08-0.75).

4.
Thromb Haemost ; 120(7): 1116-1127, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32572866

ABSTRACT

Delayed identification of coagulopathy and bleeding increases the risk of organ failure and death in hospitalized patients. Timely and accurate identification of impaired coagulation at the point-of-care can proactively identify bleeding risk and guide resuscitation, resulting in improved outcomes for patients. We test the accuracy of a novel optical coagulation sensing approach, termed iCoagLab, for comprehensive whole blood coagulation profiling and investigate its diagnostic accuracy in identifying patients at elevated bleeding risk. Whole blood samples from patients (N = 270) undergoing conventional coagulation testing were measured using the iCoagLab device. Recalcified and kaolin-activated blood samples were loaded in disposable cartridges and time-varying intensity fluctuation of laser speckle patterns were measured to quantify the clot viscoelastic modulus during coagulation. Coagulation parameters including the reaction time (R), clot progression time (K), clot progression rate (α), and maximum clot strength (MA) were derived from clot viscoelasticity traces and compared with mechanical thromboelastography (TEG). In all patients, a good correlation between iCoagLab- and TEG-derived parameters was observed (p < 0.001). Multivariate analysis showed that iCoagLab-derived parameters identified bleeding risk with sensitivity (94%) identical to, and diagnostic accuracy (89%) higher than TEG (87%). The diagnostic specificity of iCoagLab (77%) was significantly higher than TEG (69%). By rapidly and comprehensively permitting blood coagulation profiling the iCoagLab innovation is likely to advance the capability to identify patients with elevated risk for bleeding, with the ultimate goal of preventing life-threatening hemorrhage.


Subject(s)
Blood Coagulation Tests , Blood Coagulation , Hemorrhage/diagnosis , Point-of-Care Testing , Thrombelastography , Blood Coagulation Tests/instrumentation , Hemorrhage/blood , Hemorrhage/etiology , Humans , Predictive Value of Tests , Reproducibility of Results , Risk Assessment , Risk Factors , Time Factors
5.
Front Neurosci ; 14: 589107, 2020.
Article in English | MEDLINE | ID: mdl-33408607

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate brain white matter (WM) fibers connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation (TMS)-evoked potentials (TEPs). METHODS: The study included 123 participants, out of which 53 subjects with WM-related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM microstructure fractional anisotropy (FA). RESULTS: DELPHI output measures show a significant difference between the healthy and stroke/TBI groups. A multidimensional approach was able to classify healthy from unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC) of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures achieved prediction of WM microstructure changes measured by FA with the highest correlations observed for fibers proximal to the stimulation area, such as frontal corpus callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital fasciculus (r = 0.65 ± 0.03). CONCLUSION: These results indicate that features of TMS-evoked response are correlated to WM microstructure changes observed in pathological conditions, such as stroke and TBI, and that a multidimensional approach combining these features in supervised learning methods serves as a strong indicator for abnormalities and changes in WM integrity.

6.
JBMR Plus ; 3(11): e10226, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768487

ABSTRACT

Schnurri-3 (Shn3) is an essential regulator of postnatal skeletal remodeling. Shn3-deficient mice (Shn3-/-) have high bone mass; however, their bone mechanical and material properties have not been investigated to date. We performed three-point bending of femora, compression tests of L3 vertebrae. We also measured intrinsic material properties, including bone mineralization density distribution (BMDD) and osteocyte lacunae section (OLS) characteristics by quantitative backscatter electron imaging, as well as collagen cross-linking by Fourier transform infrared microspectroscopy of femora from Shn3-/- and WT mice at different ages (6 weeks, 4 months, and 18 months). Moreover, computer modeling was performed for the interpretation of the BMDD outcomes. Femora and L3 vertebrae from Shn3-/- aged 6 weeks revealed increased ultimate force (2.2- and 3.2-fold, p < .01, respectively). Mineralized bone volume at the distal femoral metaphysis was about twofold (at 6 weeks) to eightfold (at 4 and 18 months of age) in Shn3-/- (p < .001). Compared with WT, the average degree of trabecular bone mineralization was similar at 6 weeks, but increased at 4 and 18 months of age (+12.6% and +7.7%, p < .01, respectively) in Shn3-/-. The analysis of OLS characteristics revealed a higher OLS area for Shn3-/- versus WT at all ages (+16%, +23%, +21%, respectively, p < .01). The collagen cross-link ratio was similar between groups. We conclude that femora and vertebrae from Shn3-/- had higher ultimate force in mechanical testing. Computer modeling demonstrated that in cases of highly increased bone volume, the average degree of bone matrix mineralization can be higher than in WT bone, which was actually measured in the older Shn3-/- groups. The area of 2D osteocyte lacunae sections was also increased in Shn3-deficiency, which could only partly be explained by larger remnant areas of primary cortical bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
Am J Bot ; 106(2): 292-302, 2019 02.
Article in English | MEDLINE | ID: mdl-30791095

ABSTRACT

PREMISE OF THE STUDY: An Akania-like inflorescence, including flowers with in situ pollen was recovered from the remarkable Konservat-Lagerstätte lacustrine diatomite deposit at Foulden Maar, Otago indicating the presence of Akaniaceae in southern New Zealand during the early Miocene. The flowers, although slightly smaller than the sole modern Australian species, A. bidwillii, contain pollen grains that are very like that taxon. The pollen also resembles that of the monospecific sister genus Bretschneidera from Southeast Asia and India, although that taxon has flowers with very different morphology from this genus. METHODS: The floral morphology of the fossil and in situ pollen grains were compared with flowers and pollen grains from extant species of Akaniaceae and related taxa. KEY RESULTS: The fossil inflorescence and associated pollen are referred to a new, extinct species of Akania: Akania gibsonorum. The floral structures and pollen resemble those of the modern Australian Akania species. CONCLUSIONS: The discovery of fossil flowers of Akania in an early Miocene lake deposit in New Zealand, coupled with earlier recognition of Akaniaceae leaves from the Paleocene epoch and wood from the Miocene epoch in South America suggests that the genus was once widespread in former Gondwana landmasses. The extinction of Akaniaceae in New Zealand and South America, and its present relictual distribution in eastern Australia, is most likely related to post-Miocene climatic cooling.


Subject(s)
Fossils/ultrastructure , Inflorescence , Magnoliopsida , New Zealand , Pollen/ultrastructure
8.
Handb Clin Neurol ; 158: 269-278, 2018.
Article in English | MEDLINE | ID: mdl-30482355

ABSTRACT

The study of contact and collision sport athletes at risk for concussion began approximately three decades ago. Since then, sport-related concussion (SRC) research across several medical specialties has helped to develop consensus guidelines for clinical management through interdisciplinary efforts. The modern landscape of SRC research includes large-scale investigations to define the natural history of concussion and identify factors that should guide prevention, diagnosis, and treatment specific to the individual patient. We now know that the clinical and physiologic effects of concussion are related but independent constructs deserving further scientific exploration. This has sparked research that incorporates advanced neuroimaging, fluid biomarkers, biomechanics, and genomics, in addition to standard clinical outcomes. Additionally, translational research has informed our understanding of optimal rehabilitation strategies and led to a shift from the "complete rest" approach to earlier, active management interventions after concussion. Collectively, these advancements are likely to substantially improve patient outcomes after SRC and, ultimately, may prove beneficial for identifying and appropriately managing those at risk for longer-term difficulties associated with repetitive head impact exposure. The broader public health implications of improving sports safety and encouraging developmentally appropriate participation among youth and adolescents are a particularly important byproduct of continued research into SRC.


Subject(s)
Athletic Injuries/complications , Biomedical Research/methods , Biomedical Research/trends , Brain Concussion/etiology , Brain Concussion/therapy , Athletic Injuries/therapy , Humans
9.
PLoS One ; 12(7): e0180870, 2017.
Article in English | MEDLINE | ID: mdl-28719615

ABSTRACT

While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.


Subject(s)
Drug Evaluation, Preclinical/methods , Immune System/drug effects , Small Molecule Libraries/pharmacology , Chemokines/biosynthesis , Humans , Immune System/cytology , Immune System/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Phagocytes/drug effects , Phagocytes/immunology , Phagocytes/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism , Transcriptome/drug effects
10.
Front Mol Neurosci ; 10: 200, 2017.
Article in English | MEDLINE | ID: mdl-28680392

ABSTRACT

In the brainstem nucleus of the solitary tract (NTS), primary vagal afferent neurons express the transient receptor potential vanilloid subfamily member 1 (TRPV1) at their central terminals where it contributes to quantal forms of glutamate release. The endogenous membrane lipid anandamide (AEA) is a putative TRPV1 agonist in the brain, yet the extent to which AEA activation of TRPV1 has a neurophysiological consequence is not well established. We investigated the ability of AEA to activate TRPV1 in vagal afferent neurons in comparison to capsaicin (CAP). Using ratiometric calcium imaging and whole-cell patch clamp recordings we confirmed that AEA excitatory activity requires TRPV1, binds competitively at the CAP binding site, and has low relative affinity. While AEA-induced increases in peak cytosolic calcium were similar to CAP, AEA-induced membrane currents were significantly smaller. Removal of bath calcium increased the AEA current with no change in peak CAP currents revealing a calcium sensitive difference in specific ligand activation of TRPV1. Both CAP- and AEA-activated TRPV1 currents maintained identical reversal potentials, arguing against a major difference in ion selectivity to resolve the AEA differences in signaling. In contrast with CAP, AEA did not alter spontaneous glutamate release at NTS synapses. We conclude: (1) AEA activation of TRPV1 is markedly different from CAP and produces different magnitudes of calcium influx from whole-cell current; and (2) exogenous AEA does not alter spontaneous glutamate release onto NTS neurons. As such, AEA may convey modulatory changes to calcium-dependent processes, but does not directly facilitate glutamate release.

11.
Acad Emerg Med ; 24(5): 617-627, 2017 05.
Article in English | MEDLINE | ID: mdl-28177169

ABSTRACT

OBJECTIVES: A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. METHODS: Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study. A total of 720 patients (18-85 years) meeting inclusion/exclusion criteria were enrolled in this observational, prospective validation trial, at 11 U.S. EDs. GCS was 15 in 97%, with the first and third quartiles being 15 (interquartile range = 0) in the study population at the time of the evaluation. Standard clinical evaluations were conducted and 5 to 10 minutes of electroencephalogram (EEG) was acquired from frontal and frontal-temporal scalp locations. Using an a priori derived EEG-based classification algorithm developed on an independent population and applied to this validation population prospectively, the likelihood of each subject being CT+ was determined, and performance metrics were computed relative to adjudicated CT findings. RESULTS: Sensitivity of the binary classifier (likely CT+ or CT-) was 92.3% (95% confidence interval [CI] = 87.8%-95.5%) for detection of any intracranial injury visible on CT (CT+), with specificity of 51.6% (95% CI = 48.1%-55.1%) and negative predictive value (NPV) of 96.0% (95% CI = 93.2%-97.9%). Using ternary classification (likely CT+, equivocal, likely CT-) demonstrated enhanced sensitivity to traumatic hematomas (≥1 mL of blood), 98.6% (95% CI = 92.6%-100.0%), and NPV of 98.2% (95% CI = 95.5%-99.5%). CONCLUSION: Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients.


Subject(s)
Brain Injuries, Traumatic/diagnosis , Emergency Service, Hospital , Head Injuries, Closed/diagnostic imaging , Triage/methods , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Biomarkers , Electroencephalography , Female , Glasgow Coma Scale , Humans , Male , Middle Aged , Prospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed , Young Adult
12.
Cell Rep ; 17(12): 3206-3218, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28009290

ABSTRACT

Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4+CD8+ (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCR)α selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Thymocytes/immunology , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/therapy , Gene Expression Regulation/immunology , Gene Rearrangement/genetics , Humans , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors , Receptors, Antigen, T-Cell, alpha-beta/genetics , Th17 Cells/drug effects , Th17 Cells/immunology
13.
Front Plant Sci ; 7: 983, 2016.
Article in English | MEDLINE | ID: mdl-27462324

ABSTRACT

Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence.

14.
Mil Med ; 181(5 Suppl): 1, 2016 05.
Article in English | MEDLINE | ID: mdl-27168544
15.
Am J Bot ; 103(5): 938-56, 2016 05.
Article in English | MEDLINE | ID: mdl-27208361

ABSTRACT

PREMISE OF THE STUDY: The history of the basal angiosperm family Monimiaceae is based largely on fossil wood and leaf and floral fossils of uncertain affinity. Fossilized leaves with a well-preserved cuticle and Hedycarya-like flowers, including one with in situ pollen tetrads and fruits from an early Miocene lacustrine diatomite deposit in southern New Zealand implies a long record for Hedycarya in New Zealand. The flowers contain pollen grains that are very similar to those of the modern New Zealand species Hedycarya arborea and the Australian H. angustifolia but are considerably smaller. METHODS: We undertook comparative studies of the leaf, flower and fruit morphology of the newly discovered macrofossils and compared the in situ pollen grains from the flower with dispersed pollen grains from extant species. KEY RESULTS: The leaves are referred to a new, extinct species, Hedycarya pluvisilva Bannister, Conran, Mildenh. & D.E.Lee, (Monimiaceae), and associated with fossilized Hedycarya-like flowers that include in situ pollen and an infructescence of three drupes from the same site. Phylogenetic analysis placed the fossil into Hedycarya, sister to H. angustifolia in a clade with H. arborea and Levieria acuminata. A new name, Planarpollenites fragilis Mildenh., is proposed for dispersed fossil pollen tetrads at the site and those associated with the flower. CONCLUSIONS: The fossils are similar to those of modern Australian and New Zealand Hedycarya species, suggesting that the genus and related taxa have been significant components of the rainforests of Australia and the former Zealandian subcontinent for most of the Cenozoic.


Subject(s)
Fossils , Magnoliopsida/anatomy & histology , Pollen/anatomy & histology , Flowers/anatomy & histology , Fruit/anatomy & histology , Geography , New Zealand , Phylogeny , Plant Leaves/anatomy & histology , Specimen Handling , Terminology as Topic
16.
JAMA Neurol ; 73(5): 551-60, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27018834

ABSTRACT

IMPORTANCE: Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have been widely studied and show promise for clinical usefulness in suspected traumatic brain injury (TBI) and concussion. Understanding their diagnostic accuracy over time will help translate them into clinical practice. OBJECTIVES: To evaluate the temporal profiles of GFAP and UCH-L1 in a large cohort of trauma patients seen at the emergency department and to assess their diagnostic accuracy over time, both individually and in combination, for detecting mild to moderate TBI (MMTBI), traumatic intracranial lesions on head computed tomography (CT), and neurosurgical intervention. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study enrolled adult trauma patients seen at a level I trauma center from March 1, 2010, to March 5, 2014. All patients underwent rigorous screening to determine whether they had experienced an MMTBI (blunt head trauma with loss of consciousness, amnesia, or disorientation and a Glasgow Coma Scale score of 9-15). Of 3025 trauma patients assessed, 1030 met eligibility criteria for enrollment, and 446 declined participation. Initial blood samples were obtained in 584 patients enrolled within 4 hours of injury. Repeated blood sampling was conducted at 4, 8, 12, 16, 20, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, and 180 hours after injury. MAIN OUTCOMES AND MEASURES: Diagnosis of MMTBI, presence of traumatic intracranial lesions on head CT scan, and neurosurgical intervention. RESULTS: A total of 1831 blood samples were drawn from 584 patients (mean [SD] age, 40 [16] years; 62.0% [362 of 584] male) over 7 days. Both GFAP and UCH-L1 were detectible within 1 hour of injury. GFAP peaked at 20 hours after injury and slowly declined over 72 hours. UCH-L1 rose rapidly and peaked at 8 hours after injury and declined rapidly over 48 hours. Over the course of 1 week, GFAP demonstrated a diagnostic range of areas under the curve for detecting MMTBI of 0.73 (95% CI, 0.69-0.77) to 0.94 (95% CI, 0.78-1.00), and UCH-L1 demonstrated a diagnostic range of 0.30 (95% CI, 0.02-0.50) to 0.67 (95% CI, 0.53-0.81). For detecting intracranial lesions on CT, the diagnostic ranges of areas under the curve were 0.80 (95% CI, 0.67-0.92) to 0.97 (95% CI, 0.93-1.00)for GFAP and 0.31 (95% CI, 0-0.63) to 0.77 (95% CI, 0.68-0.85) for UCH-L1. For distinguishing patients with and without a neurosurgical intervention, the range for GFAP was 0.91 (95% CI, 0.79-1.00) to 1.00 (95% CI, 1.00-1.00), and the range for UCH-L1 was 0.50 (95% CI, 0-1.00) to 0.92 (95% CI, 0.83-1.00). CONCLUSIONS AND RELEVANCE: GFAP performed consistently in detecting MMTBI, CT lesions, and neurosurgical intervention across 7 days. UCH-L1 performed best in the early postinjury period.


Subject(s)
Brain Concussion/blood , Brain Concussion/diagnostic imaging , Glial Fibrillary Acidic Protein/blood , Ubiquitin Thiolesterase/blood , Wounds and Injuries/blood , Wounds and Injuries/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Brain Concussion/complications , Brain Concussion/surgery , Cohort Studies , Emergency Service, Hospital , Female , Glasgow Outcome Scale , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Time Factors , Tomography, X-Ray Computed , Wounds and Injuries/complications , Wounds and Injuries/surgery , Young Adult
17.
PLoS One ; 10(6): e0128871, 2015.
Article in English | MEDLINE | ID: mdl-26083758

ABSTRACT

The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.


Subject(s)
Biological Evolution , Chiroptera/physiology , Diet , Fossils , Phylogeny , Animals , Chiroptera/anatomy & histology , Chiroptera/classification , Ecosystem , Food Chain , New Zealand , Plants , Rainforest
18.
Mil Med ; 180(3 Suppl): 1, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25747620
20.
Mil Med ; 179(8 Suppl): ii, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25102553
SELECTION OF CITATIONS
SEARCH DETAIL
...