Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 23(11): 6377-6390, 2021 11.
Article in English | MEDLINE | ID: mdl-34347349

ABSTRACT

The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.


Subject(s)
Desiccation , Eukaryota , Adaptation, Physiological , Eukaryota/metabolism , Water/metabolism
2.
Environ Microbiol ; 23(7): 3335-3344, 2021 07.
Article in English | MEDLINE | ID: mdl-33817931

ABSTRACT

Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.


Subject(s)
Exobiology , Extraterrestrial Environment , Earth, Planet , Ecosystem , Environmental Microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...