Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(9): e107556, 2014.
Article in English | MEDLINE | ID: mdl-25233448

ABSTRACT

BACKGROUND: Exposure to subclinical levels of lipopolysaccharide (LPS) occurs commonly and is seemingly well tolerated. However, recurrent LPS exposure induces cardiac fibrosis over 2 to 3 months in a murine model, not mediated by the renin-angiotensin system. Subclinical LPS induces cardiac fibrosis by unique mechanisms. METHODS: In C57/Bl6 mice, LPS (10 mg/kg) or saline (control) were injected intraperitoneally once a week for 1-4 weeks. Mice showed no signs of distress, change in activity, appetite, or weight loss. Mice were euthanized after 3 days, 1, 2, or 4 weeks to measure cardiac expression of fibrosis-related genes and potential mediators (measured by QRT-PCR), including micro-RNA (miR) and NADPH oxidase (NOX). Collagen fraction area of the left ventricle was measured with picrosirius red staining. Cardiac fibroblasts isolated from adult mouse hearts were incubated with 0, 0.1, 1.0 or 10 ng/ml LPS for 48 hours. RESULTS: Cardiac miR expression profiling demonstrated decreased miR-29c after 3 and 7 days following LPS, which were confirmed by QRT-PCR. The earliest changes in fibrosis-related genes and mediators that occurred 3 days after LPS were increased cardiac expression of TIMP-1 and NOX-2 (but not of NOX-4). This persisted at 1 and 2 weeks, with additional increases in collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, TIMP2, and periostin. There was no change in TGF-ß or connective tissue growth factor. Collagen fraction area of the left ventricle increased after 2 and 4 weeks of LPS. LPS decreased miR-29c and increased NOX-2 in isolated cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS induces cardiac fibrosis after 2-4 weeks. Early changes 3 days after LPS were decreased miR-29c and increased NOX2 and TIMP1, which persisted at 1 and 2 weeks, along with widespread activation of fibrosis-related genes. Decreased miR-29c and increased NOX2, which induce cardiac fibrosis in other conditions, may uniquely mediate LPS-induced cardiac fibrosis.


Subject(s)
Cardiomyopathies/chemically induced , Endomyocardial Fibrosis/chemically induced , Hypertrophy, Left Ventricular/chemically induced , Membrane Glycoproteins/biosynthesis , MicroRNAs/genetics , NADPH Oxidases/biosynthesis , Animals , Cell Adhesion Molecules/biosynthesis , Cells, Cultured , Collagen Type I/biosynthesis , Lipopolysaccharides , Male , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , NADPH Oxidase 2 , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-2/biosynthesis
2.
J Am Coll Cardiol ; 41(3): 482-8, 2003 Feb 05.
Article in English | MEDLINE | ID: mdl-12575980

ABSTRACT

OBJECTIVES: Apoptosis develops in several heart diseases, but the therapeutic options are limited. It was hypothesized that nicotine, which inhibits apoptosis in several cells, inhibits cardiac apoptosis induced by lipopolysaccharide (LPS). BACKGROUND: Over-the-counter nicotine produces sustained levels (10 to 25 ng/ml) that may be antiapoptotic. Low levels of LPS induce apoptosis by activating tissue renin-angiotensin to stimulate angiotensin II, type 1 (AT(1)) receptors in cardiac myocytes. METHODS: Adult Sprague Dawley rats were pretreated with nicotine (6 mg/kg/day) or saline for seven to ten days (miniosmotic pumps). The LPS (1 mg/kg) was injected intravenously. Toll-like receptor 4 (TLR4) and angiotensinogen messenger ribonucleic acid (mRNA) were measured in the heart after 0, 4, 8, 16, and 24 h. Cardiac apoptosis was measured by terminal deoxy-nucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining after 24 h. In vitro effects of LPS (10 ng/ml, 24 h) were studied in cardiac myocytes isolated from rats pretreated with nicotine for 7 to 10 days, or after pre-exposing myocytes to nicotine (15 ng/ml) for 1, 4, 16, or 24 h. RESULTS: Neither nicotine nor LPS affected systolic blood pressure. The LPS increased cardiac apoptosis after 24 h in saline-treated, but not nicotine-treated rats, despite similar increases in cardiac TLR4 and angiotensinogen mRNA over 8 to 16 h. The LPS-induced apoptosis was blocked by pre-exposing myocytes to nicotine for 4 to 24 h (partial inhibition after 1 h). Nicotine did not inhibit apoptosis induced by angiotensin II (100 nM, 24 h). CONCLUSIONS: Therapeutic levels of nicotine inhibit LPS-induced cardiac apoptosis. This occurs after LPS increases TLR4 and angiotensinogen mRNA, but proximal to AT(1) receptor activation. Nicotine may be a novel inhibitor of cardiac apoptosis in conditions associated with circulating LPS (e.g., decompensated heart failure, acute and chronic infections).


Subject(s)
Apoptosis/drug effects , Ganglionic Stimulants/therapeutic use , Heart Diseases/chemically induced , Heart Diseases/drug therapy , Lipopolysaccharides/adverse effects , Nicotine/therapeutic use , Animals , Apoptosis/physiology , Disease Models, Animal , Female , Ganglionic Stimulants/pharmacology , Heart Diseases/physiopathology , In Vitro Techniques , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Nicotine/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors
3.
Am J Physiol Heart Circ Physiol ; 283(2): H461-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12124189

ABSTRACT

Lipopolysaccharide (LPS) from gram-negative bacteria circulates in acute, subacute, and chronic conditions. It was hypothesized that LPS directly induces cardiac apoptosis. In adult rat ventricular myocytes (isolated with depyrogenated digestive enzymes to minimize tolerance), LPS (10 ng/ml) decreased the ratio of Bcl-2 to Bax at 12 h; increased caspase-3 activity at 16 h; and increased annexin V, propidium iodide, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining at 24 h. Apoptosis was blocked by the caspase inhibitor benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone (Z-VAD-fmk), captopril, and angiotensin II type 1 receptor (AT(1)) inhibitor (losartan), but not by inhibitors of AT(2) receptors (PD-123319), tumor necrosis factor-alpha (TNFRII:Fc), or nitric oxide (N(G)-monomethyl-L-arginine). Angiotensin II (100 nmol/l) induced apoptosis similar to LPS without additive effects. LPS in vivo (1 mg/kg iv) increased apoptosis in left ventricular myocytes for 1-3 days, which dissipated after 1-2 wk. Losartan (23 mg. kg(-1). day(-1) in drinking water for 3 days) blocked LPS-induced in vivo apoptosis. In conclusion, low levels of LPS induce cardiac apoptosis in vitro and in vivo by activating AT(1) receptors in myocytes.


Subject(s)
Apoptosis , Lipopolysaccharides/pharmacology , Myocardium/metabolism , Receptors, Angiotensin/physiology , Ventricular Function/drug effects , Animals , Apoptosis/physiology , Female , Male , Myocardium/cytology , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1
SELECTION OF CITATIONS
SEARCH DETAIL
...