Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Appl Biochem Biotechnol ; 196(2): 1104-1121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37335458

ABSTRACT

The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Silver/pharmacology , Silver/chemistry , Schinus , Metal Nanoparticles/chemistry , Escherichia coli , Reactive Oxygen Species , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
2.
Mikrochim Acta ; 190(2): 73, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36695940

ABSTRACT

An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Humans , Biosensing Techniques/methods , Nanotubes, Carbon/chemistry , Immunoassay , Immunoglobulin G , Electrodes
3.
Biosens Bioelectron X ; 12: 100222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36118917

ABSTRACT

We report two novel genosensors for the quantification of SARS-CoV-2 nucleic acid using glassy carbon electrodes modified with a biocapture nanoplatform made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with avidin (Av) as a support of the biotinylated-DNA probes. One of the genosensors was based on impedimetric transduction offering a non-labelled and non-amplified detection of SARS-CoV-2 nucleic acid through the increment of [Fe(CN)6]3-/4- charge transfer resistance. This biosensor presented an excellent analytical performance, with a linear range of 1.0 × 10-18 M - 1.0 × 10-11 M, a sensitivity of (5.8 ± 0.6) x 102 Ω M-1 (r2 = 0.994), detection and quantification limits of 0.33 aM and 1.0 aM, respectively; and reproducibilities of 5.4% for 1.0 × 10-15 M target using the same MWCNTs-Av-bDNAp nanoplatform, and 6.9% for 1.0 × 10-15 M target using 3 different nanoplatforms. The other genosensor was based on a sandwich hybridization scheme and amperometric transduction using the streptavidin(Strep)-biotinylated horseradish peroxidase (bHRP)/hydrogen peroxide/hydroquinone (HQ) system. This genosensor allowed an extremely sensitive quantification of the SARS-CoV-2 nucleic acid, with a linear range of 1.0 × 10-20 M - 1.0 × 10-17 M, detection limit at zM level, and a reproducibility of 11% for genosensors prepared with the same MWCNTs-Av-bDNAp1 nanoplatform. As a proof-of-concept, and considering the extremely high sensitivity, the genosensor was challenged with highly diluted samples obtained from SARS-CoV-2 RNA PCR amplification.

4.
Analyst ; 147(10): 2130-2140, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35421882

ABSTRACT

This work presents for the first time the systematic preparation of a novel carbon nanotube-MCM-41 hybrid employing the mesoporous material MCM-41 as a successful dispersant for multiwall carbon nanotubes (MWCNTs). Relevant dispersion variables such as the amount of MWCNTs, MCM-41 concentration, and sonication time were optimized through a central composite design (CDD)/response surface methodology (RSM). Several solvents were evaluated and N,N-dimethylformamide (DMF) was selected because it allowed reaching stable dispersions with very good electrochemical response. The electrochemical performance of glassy carbon electrodes (GCE) modified with different hybrids was evaluated by cyclic voltammetry (CV) using ascorbic acid (AA) as redox marker, while their surface morphology was characterized by SEM microscopy. The optimal MWCNT-MCM-41 dispersion condition was 0.75 mg mL-1 MWCNTs, 0.25 mg mL-1 MCM-41, and 30 min sonication. Both, electrochemical results and SEM images correlate with a percolation behavior from MWCNT-MCM-41 hybrid. Electrooxidation of AA at GCE modified with the optimal hybrid occurred under diffusion control and exhibited an enhanced current response (65 µA) and a lower overvoltage (-0.005 V) compared to bare GCE (ip = 22 µA, Ep = 0.255 V). The amperometric response of AA at GCE/MWCNT-MCM-41 exhibited remarkable figures of merit, including an ultralow detection limit (1.5 nM), high sensitivity (45.4 × 103 µA M-1), excellent short- and long-term stability, and very good anti-interference ability for AA detection. The analytical applicability of the developed electrochemical sensor was evaluated by sensing AA in several real samples, showing excellent correlation with the values reported by manufacturers in both pharmaceutical and food samples.


Subject(s)
Nanotubes, Carbon , Ascorbic Acid/chemistry , Electrochemical Techniques/methods , Electrodes , Nanotubes, Carbon/chemistry , Silicon Dioxide
5.
J Pharm Biomed Anal ; 189: 113478, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32768875

ABSTRACT

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanostructures , Electrochemical Techniques , MicroRNAs/genetics , Nucleic Acid Hybridization
6.
Biochim Biophys Acta Biomembr ; 1861(6): 1086-1092, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30902625

ABSTRACT

The use of silver nanoparticles (AgNPs) with their novel and distinct physical, chemical, and biological properties, has proven to be an alternative for the development of new antibacterial agents. In particular, the possibility to generate AgNPs coated with novel capping agents, such as phytomolecules obtained via a green synthesis (G-AgNPs), is attracting great attention in scientific research. Recently, we showed that membrane interactions seem to be involved in the antibacterial activity of AgNPs obtained via a green chemical synthesis using the aqueous leaf extract of chicory (Cichorium intybus L.). Furthermore, we observed that these G-AgNPs exhibited higher antibacterial activity than those obtained by chemical synthesis. In order to achieve the green AgNPs mode of action as well as their cellular target, we aimed to study the antibacterial activity of this novel green AgNPs against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The effect of the G-AgNPs on the bacterial surface was first evaluated by zeta potential measurements and correlated with direct plate count agar method. Afterwards, atomic force microscopy was applied to directly unravel the effects of these G-AgNPs on bacterial envelopes. Overall, the data obtained in this study seems correlate with a multi-step mechanism by which G-AgNPs-lipid membrane interactions is the first step prior to membrane disruption, resulting in antibacterial activity.


Subject(s)
Bacteria/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Microscopy, Atomic Force , Surface Properties
7.
Colloids Surf B Biointerfaces ; 171: 320-326, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30055472

ABSTRACT

Silver nanoparticles (AgNPs) constitute a very promising approach for overcoming the emergence of antibiotic resistance bacteria. Although their mode of action could be related with membrane damage, the AgNPs-lipid membrane interaction is still unclear. In this sense, the present work investigated the interaction of model lipid membranes with AgNPs coated with different capping agents such as citrate (C-AgNPs) and phytomolecules (G-AgNPs) obtained via a green synthesis. The AgNPs-membrane interactions were evaluated studying i) the surface pressure changes on both zwitterionic (DMPC) and negatively charged (DMPC:DMPG) lipid monolayers, ii) the zeta potential and DLS of DMPC:DMPG liposomes and iii) Zeta potential on Escherichia coli membranes, incubated with this nanomaterials. The results showed that both negatively charged-AgNPs can interact with these lipid monolayers inducing an increase in the surface pressure but G-AgNPs presented a significantly higher affinity toward both monolayers in comparison with C-AgNPs. Zeta potential data confirmed again the interaction event showing that both DMPC:DMPG liposomes and E. coli bacteria became more negative with the addition of G-AgNPs. This increased net negative charge of the liposomes and E. coli allows to indicate an interfacial interaction where the green nanometal should keep adsorbed to the membrane via the insertion of aromatic/hydrophobic moieties of capping agents on the surface of AgNPs into the lipid bilayer. Summarizing, the AgNPs-membrane interaction should be an essential step in the antibacterial activity either because the membrane is the main target or by increasing the local concentration of silver from G-AgNPs accumulation which could cause the bactericidal effect.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Escherichia coli/cytology , Metal Nanoparticles/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Models, Molecular , Particle Size , Silver/chemistry , Surface Tension
8.
Environ Sci Pollut Res Int ; 24(33): 26049-26059, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28942560

ABSTRACT

Rate coefficients for the gas-phase reactions of OH radicals and Cl atoms with 1-methoxy-2-propanone (1-M-2-PONE), 1-methoxy-2-propanol (1-M-2-POL), and 1-methoxy-2-butanol (1-M-2-BOL) were determined at room temperature and atmospheric pressure using a conventional relative-rate technique. The following absolute rate coefficients were derived: k 1(OH + 1-M-2-PONE) = (0.64 ± 0.13) × 10-11, k 2(OH + 1-M-2-BOL) = (2.19 ± 0.23) × 10-11, k 3(Cl + 1-M-2-PONE = (1.07 ± 0.24) × 10-10, k 4(Cl + 1-M-2-POL) = (2.28 ± 0.21) × 10-10, and k 5 (Cl + 1-M-2-BOL) = (2.79 ± 0.23) × 10-10, in units of cm3 molecule-1 s-1. This is the first experimental determination of k 2-k 5. These rate coefficients were used to discuss the influence of the structure on the reactivity of the studied polyfunctional organic compounds. The atmospheric implications for 1-M-2-PONE, 1-M-2-POL, and 1-M-2-BOL and their reactions were investigated estimating atmospheric parameters such as lifetimes, global warming potentials, and average photochemical ozone production. The approximate nature of these values was stressed considering that the studied oxygenated volatile organic compounds are short-lived compounds for which the calculated parameters may vary depending on chemical composition, location, and season at the emission points.


Subject(s)
Atmosphere/chemistry , Chlorine/chemistry , Ethers/chemistry , Hydroxyl Radical/chemistry , Global Warming , Kinetics , Ozone , Volatile Organic Compounds/chemistry
9.
Int J Biomater ; 2016: 5971047, 2016.
Article in English | MEDLINE | ID: mdl-27340405

ABSTRACT

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host.

10.
Biosens Bioelectron ; 39(1): 76-81, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22794932

ABSTRACT

We report for the first time the development of a sensitive and selective glucose biosensor based on the self-assembling of multiwall carbon nanotubes (MWCNTs) dispersed in polyhistidine (Polyhis) and glucose oxidase (GOx) on glassy carbon electrodes (GCE). The supramolecular architecture was characterized by SEM, FT-IR and electrochemical techniques. The optimum multistructure was obtained with five (MWCNT-Polyhis/GOx) bilayers and one layer of Nafion as anti-interferent barrier. The sensitivity at 0.700V was (1.94±0.03) mAM(-1) (r=0.9991), with a linear range between 0.25 and 5.00mM, a detection limit of 2.2µM and a quantification limit of 6.7µM with minimum interference from lactose (1.5%), maltose (5.7%), galactose (1.2%), ascorbic acid (1.0%), and uric acid (3.3%). The biocatalytic layer demonstrated to be highly reproducible since the R.S.D. for 10 successive amperometric calibrations using the same surface was 3.6%. The sensitivity of the biosensor after 15 day storage at 4°C remained at 90% of its original value. The combination of the excellent dispersing properties and polycationic nature of polyhistidine, the stability of the MWCNT-Polyhis dispersion, the electrocatalytic properties of MWCNTs, the biocatalytic specificity of GOx, and the permselective properties of Nafion have allowed building up a sensitive, selective, robust, reproducible and stable glucose amperometric biosensor for the quantification of glucose in milk samples.


Subject(s)
Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Glucose/analysis , Histidine/chemistry , Infant Formula/chemistry , Nanotubes, Carbon/chemistry , Aspergillus niger/enzymology , Electrochemical Techniques/methods , Enzymes, Immobilized/metabolism , Fluorocarbon Polymers/chemistry , Glucose/metabolism , Glucose Oxidase/metabolism , Humans , Sensitivity and Specificity
11.
Anal Chim Acta ; 710: 58-64, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22123112

ABSTRACT

We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT-Polyhis was obtained by sonicating for 30 min 1.0 mg mL(-1) MWCNTs in 0.25 mg mL(-1) Polyhis solution prepared in 75:25 (v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The dispersion was characterized by scanning electron microscopy, and by cyclic voltammetry and amperometry using ascorbic acid as redox marker. The modification of glassy carbon electrodes with MWCNT-Polyhis produces a drastic decrease in the overvoltage for the oxidation of ascorbic acid (580 mV) at variance with the response observed at glassy carbon electrodes modified just with Polyhis, where the charge transfer is more difficult due to the blocking effect of the polymer. The reproducibility for the sensitivities obtained after 10 successive calibration plots using the same surface was 6.3%. The MWCNT-modified glassy carbon electrode demonstrated to be highly stable since after 45 days storage at room temperature the response was 94.0% of the original. The glassy carbon electrode modified with MWCNT-Polyhis dispersion was successfully used to quantify dopamine or uric acid at nanomolar levels, even in the presence of large excess of ascorbic acid. Determinations of uric acid in human blood serum samples demonstrated a very good correlation with the value reported by Wienner laboratory.


Subject(s)
Electrochemical Techniques , Histidine/chemistry , Nanotubes, Carbon/chemistry , Ascorbic Acid/chemistry , Dopamine/analysis , Electrodes , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction , Sonication , Temperature , Uric Acid/blood
12.
Chemphyschem ; 11(18): 4053-9, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20853389

ABSTRACT

The relative rate technique has been used to determine the rate constants of the reactions of OH radicals with CF(3)CCl=CCl(2) (k(1)), CF(3)CCl=CClCF(3) (k(2)) and CF(3)CF=CFCF(3) (k(3)). Experiments were carried out at (298±2) K and atmospheric pressure using ultrapure nitrogen as gas bath. The decay rates of the organic species were measured relative to those of ethane, methanol, acetone, chloroethane and 2-butanone. The following rate constants were derived in units of cm(3) molecule(-1) s(-1): k(1)= (10±1)×10(-13), k(2)=(2.1±0.2)×10(-13) and k(3)=(3.7±0.2)×10(-13). This is the first experimental determination of k(1) and k(2). The rate constants obtained are compared with previous literature data to establish reactivity trends and are used to estimate the atmospheric lifetimes of the studied perhaloalkenes. From the calculated lifetimes, using an average global concentration of hydroxyl radicals, the atmospheric loss of these compounds by the OH-initiated oxidation was determined. Also, estimations have been made of the ozone depletion potential (ODP), the radiative forcing efficiency (RE), the halocarbon global warming potential (HGWP) and the global warming potential (GWP) of the perhaloalkenes. The approximate nature of these values is stressed considering that these are short-lived compounds for which these atmospheric parameters may vary according to latitude and season.

13.
J Phys Chem A ; 112(19): 4444-50, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18433167

ABSTRACT

Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.0) x 10(-12) exp [(836 +/- 54)/T]; k2 = (6.9 +/- 0.9) x 10(-12) exp [(744 +/- 40)/T]; k3 = (10 +/- 1) x 10(-12) exp [(652 +/- 27)/T]; and k4 = (4.0 +/- 0.4) x 10(-12) exp [(783 +/- 32)/T]. At 298 K, the rate coefficients obtained by the two methods for each of the alcohols studied were in good agreement. The results are presented and compared with those obtained previously for the same and related reactions of OH radicals. Reactivity factors for substituent groups containing the hydroxyl group are determined. The atmospheric implications for the studied alcohols are considered briefly.


Subject(s)
Alcohols/chemistry , Hydroxyl Radical/chemistry , Temperature , Alkenes/chemistry , Atmosphere/chemistry , Kinetics , Nitrates/chemistry , Ozone/chemistry , Structure-Activity Relationship , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...