Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Foods ; 9(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492908

ABSTRACT

Dielectric heating is one of the most interesting techniques for pest disinfestation. However, most of the literature works give information about the ability of microwave treatments at different power-time conditions to kill insects; less is given about the analysis of matrices structural properties and heat transport. Accordingly, the aim of this work is to investigate the effect of microwave treatments, applied for pest disinfestation, on heat transport behavior and physical/structural properties, such as water uptake capability, mineral losses, texture change, and germination capability, of most consumed cereals in human diet, such as weak wheat, durum wheat, and corn. Two different radiative treatments were performed: one in time-temperature conditions capable of inactivating the weed fauna, and the other at high temperatures of ~150 °C, simulating uncontrolled treatments. Heat transport properties were measured and showed to keep unvaried during both effective and uncontrolled microwave treatments. Instead, grain physical properties were worsened when exposed to high temperatures (reduction of germination ability and texture degradation). The achieved results, on the one hand, provide new structural and heat transport data of cereals after microwave treatments, actually not present in the literature, and on the other, they confirm the importance of correctly performing microwave treatments for an effective disinfestation without affecting matrices physical properties and nutritional features.

2.
Pharmaceutics ; 12(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403375

ABSTRACT

In this study, a continuous bench scale apparatus based on microfluidic fluid dynamic principles was used in the production of ferrous sulfate-nanoliposomes for pharmaceutical/nutraceutical applications, optimizing their formulation with respect to the products already present on the market. After an evaluation of its fluid dynamic nature, the simil-microfluidic (SMF) apparatus was first used to study the effects of the adopted process parameters on vesicles dimensional features by using ultrasonic energy to enhance liposomes homogenization. Subsequently, iron-nanoliposomes were produced at different weight ratios of ferrous sulfate to the total formulation components (0.06, 0.035, 0.02, and 0.01 w/w) achieving, by using the 0.01 w/w, vesicles of about 80 nm, with an encapsulation efficiency higher than 97%, an optimal short- and long-term stability, and an excellent bioavailability in Caco-2 cell line. Moreover, a comparison realized between the SMF method and two more conventional production techniques showed that by using the SMF setup the process time was drastically reduced, and the process yield increased, achieving a massive nanoliposomes production. Finally, duty-cycle sonication was detected to be a scalable technique for vesicles homogenization.

3.
Pharmaceutics ; 11(8)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344836

ABSTRACT

In the last years the rapid development of Nucleic Acid Based Drugs (NABDs) to be used in gene therapy has had a great impact in the medical field, holding enormous promise, becoming "the latest generation medicine" with the first ever siRNA-lipid based formulation approved by the United States Food and Drug Administration (FDA) for human use, and currently on the market under the trade name Onpattro™. The growth of such powerful biologic therapeutics has gone hand in hand with the progress in delivery systems technology, which is absolutely required to improve their safety and effectiveness. Lipid carrier systems, particularly liposomes, have been proven to be the most suitable vehicles meeting NABDs requirements in the medical healthcare framework, limiting their toxicity, and ensuring their delivery and expression into the target tissues. In this review, after a description of the several kinds of liposomes structures and formulations used for in vitro or in vivo NABDs delivery, the broad range of siRNA-liposomes production techniques are discussed in the light of the latest technological progresses. Then, the current status of siRNA-lipid delivery systems in clinical trials is addressed, offering an updated overview on the clinical goals and the next challenges of this new class of therapeutics which will soon replace traditional drugs.

4.
RSC Adv ; 9(34): 19800-19812, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519406

ABSTRACT

Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer-lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications.

5.
Eur J Pharm Sci ; 121: 16-28, 2018 08 30.
Article in English | MEDLINE | ID: mdl-29777855

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable indomethacin delivery system, with a great potential in industrial manufacturing.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chitosan/chemistry , Cholesterol/chemistry , Drug Delivery Systems , Indomethacin/chemistry , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Adhesiveness , Drug Liberation , Gastric Juice/chemistry , Intestinal Secretions/chemistry , Liposomes , Microfluidics , Mucins/chemistry
6.
Food Funct ; 9(3): 1816-1828, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29513336

ABSTRACT

This study is focused on the characterization of the thermal behavior and physical properties of the most consumed legumes in the daily diet such as beans, lentils and chickpeas. Because of a lack of information in the literature about the effect of microwave treatments on legumes, characterization protocols have been applied before and after subjecting them to microwave irradiation suitable for pest disinfestation. The effects of two different radiative treatments, one suitable for inactivating the infesting fauna and the other simulating uncontrolled treatments, characterized by very high temperatures, were tested. The impacts of microwave treatments on legumes, in terms of thermal behavior, germination capability, tannin and total polyphenol composition and other physical properties (water uptake capability, texture change, mineral losses), after typical soaking cooking processes, are also studied. The thermal properties of the examined legumes were found to be comparable for all samples. Similarly, no significant differences in antinutritional factors, polyphenol and tannin content among all samples were detected. From the structural point of view, samples exposed to high temperatures showed texture degradation and in turn, loss of mineral nutrients during soaking processes. Moreover, their germination capability was drastically reduced. These latter results highlighted why it is important to correctly perform the radiative microwave process in order to both ensure effective and safe disinfestation and avoid nutritional value loss and the worsening of physical properties.


Subject(s)
Cicer/chemistry , Cicer/radiation effects , Lens Plant/chemistry , Lens Plant/radiation effects , Phaseolus/chemistry , Phaseolus/radiation effects , Cooking , Hot Temperature , Microwaves , Minerals/analysis , Nutritive Value , Tannins/analysis
7.
Carbohydr Polym ; 181: 939-947, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29254058

ABSTRACT

Due to its versatile properties, hydroxypropyl methylcellulose (HPMC) is largely used in many applications and deeply studied in the various fields such as pharmaceuticals, biomaterials, agriculture, food, water purification. In this work, vitamin B12 loaded HPMC granules were produced to investigate their potential application as nutraceutical products. To this aim the impact of vitamin load on physico-chemical, mechanical and release properties of granules, achieved by wet granulation process, was investigated. In particular, three different loads of B12 (1%, 2.3% and 5% w/w) were assayed. Unloaded granules (used as control) and loaded granules were dried, sieved, and then the suitable fraction for practical uses, 0.45-2mm in size, was fully characterized. Results showed that the vitamin incorporation of 5% reduced the granulation performance in the range size of 0.45-2mm and led granules with higher porosity, more rigid and less elastic structures compared to unloaded granules and those loaded at 1% and 2.3% of B12. Vitamin release kinetics of fresh and aged granules were roughly found the same trends for all the prepared lots; however, the vitamin B12 was released more slowly when added with a load at 1% w/w, suggesting a better incorporation.


Subject(s)
Chemical Phenomena , Hypromellose Derivatives/chemistry , Mechanical Phenomena , Vitamin B 12/pharmacology , Water/chemistry , Calorimetry, Differential Scanning , Compressive Strength , Particle Size
8.
RSC Adv ; 8(60): 34614-34624, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-35548606

ABSTRACT

Liposomes constitute a class of prominent drug delivery systems due their cell-mimetic behaviour. Despite their high biocompatibility, biodegradability and low intrinsic toxicity, their poor stability in biological fluids as well as in stock conditions (high tendency to degrade or aggregate) have led to new approaches for liposome stabilization (e.g., surface covering with polymers). Here, liposomes were enwrapped by the natural biocompatible polymer chitosan to achieve stable shell-core nanostructures. Covered nanoliposomes were produced using an innovative continuous method based on microfluidic principles. The produced hybrid polymeric-lipid nanoparticles were characterized in terms of structural properties, size and stability. Moreover, phenomenological aspects in formation of nanoliposomal vesicles and chitosan layering, product quality (structure, size) and manufacturing yield related to this novel method were compared with those of the conventional dropwise method and the obtained products. The proposed simil-microfluidic method led to the production of stable and completely chitosan-covered liposomes with a shell-core nanostructure that avoided the disadvantages inherent in the conventional method (which are time-consuming and/or require bulky and more expensive equipment).

9.
Curr Drug Deliv ; 14(2): 203-215, 2017.
Article in English | MEDLINE | ID: mdl-27364732

ABSTRACT

The full success of pharmacological therapies is strongly depending on the use of suitable, efficient and smart drug delivery systems (DDSs). Thus DDSs development is one of the main challenges in pharmaceutical industry both to achieve tailored carrier systems based on drug features and to promote manufacturing innovations to reduce energetic resources, emissions, wastes and risks. Main functions of an ideal DDS are: to protect loaded active molecules from degradation in physiological environments; to deliver them in a controlled manner and towards specific organs or tissues, to allow the maintenance of drug concentration within therapeutic window. Smart features, such as those able to induce active molecule release upon the occurrence of specific physiological stimuli, are also desirable. Under the manufacturing point of view, the current industrial scenery is obliged to respond to the increasing market requirements and to the mandatory rules in sustainable productions such as raw material and energy savings. In this work a general framework on drug delivery systems preparation techniques is presented. In particular two sections on innovation in preparative approaches carried out are detailed. These latter involve the use of microwave and ultrasonic energy applied in the production of polymeric and lipidic delivery systems on micro- and nanometric scale. The novelties of these preparative approaches are emphasized and examples of developed drug delivery carriers, loaded with vitamins and drug mimicking siRNA, are shown.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Nanoparticles/chemistry , Lipids/chemical synthesis , Lipids/chemistry , Microwaves , Polymers/chemical synthesis , Polymers/chemistry , RNA, Small Interfering/administration & dosage , Ultrasonics , Vitamins/administration & dosage
10.
Int J Pharm ; 518(1-2): 50-58, 2017 Feb 25.
Article in English | MEDLINE | ID: mdl-28034735

ABSTRACT

In this study a protocol exploiting the combination of the ultrasonic atomization and the complexation between polyelectrolytes was developed to efficiently encapsulate a hydrophilic chemotherapeutic agent essentially used in the treatment of colon cancer, 5-fluorouracil, in enteric shell-core alginate-based microcarriers. The atomization assisted by ultrasound allowed to obtain small droplets by supplying low energy and avoiding drug degradation. In particular microcarriers were produced in a home-made apparatus where both the core (composed of alginate, drug, and Pluronic F127) and shell (composed of only alginate) feed were separately sent to the coaxial ultrasonic atomizer where they were nebulized and placed in contact with the complexation bulk. With the aim to obtain microstructured particles of alginate encapsulating 5-fluorouracil, different formulations of the first complexation bulk were tested; at last an emulsion made of a calcium chloride aqueous solution and dichloromethane allowed to reach an encapsulation efficiency of about 50%. This result can be considered very interesting considering that in literature similar techniques gave 5-fluorouracil encapsulation efficiencies of about 10%. Since a single complexation stage was not able to assure microcarriers gastroresistance, the formulation of a second complexation bulk was evaluated. The solution of cationic and pH-insoluble Eudragit® RS 100 in dichloromethane was chosen as bulk of second-stage complexation obtaining good enteric properties of shell-core microcarriers, i.e. a 5-FU cumulative release at pH 1 (simulating gastric pH) lower than 35%. The formation of interpolyelectrolyte complex (IPEC) between countercharged polymers and the chemical stability of 5-FU in microcarriers were confirmed by FTIR analysis, the presence of an amorphous dispersion of 5-FU in prepared microparticles was also confirmed by DSC. Finally, shell-core enteric coated microcarriers encapsulating 5-fluorouracil were used to prepare tablets, which can be potentially used as oral administration dosage systems for their 5-fluorouracil slower release.


Subject(s)
Antimetabolites, Antineoplastic/chemistry , Drug Carriers/chemistry , Fluorouracil/chemistry , Alginates/chemistry , Drug Compounding , Drug Liberation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Poloxamer/chemistry , Polyelectrolytes/chemistry , Polymethacrylic Acids/chemistry , Tablets
11.
Curr Drug Deliv ; 14(2): 231-238, 2017.
Article in English | MEDLINE | ID: mdl-27527074

ABSTRACT

Nano-carrier drug transport in blood microcirculation is one of the hotspots of current research in drug development due to many advantages over traditional therapies, such as reduced sideeffects, target delivery, controlled release, improved pharmacokinetics and therapeutic index. Despite the substantial efforts made in the design of nanotherapeutics, the big majority of the used strategies failed to overcome the biological barriers to drug transport encountered in human microvasculature, such as transport by blood flow via the microcirculatory network and margination, the mechanism according to which particles migrate along vessel radius to the wall. In fact, drug transport efficiency in microvasculature is affected by both the particulate nature of blood and drug carrier properties, such as size, shape and surface charge. In this work, the effect of the surface charge of liposomes on their margination in blood flow in microcapillaries was experimentally evaluated. By high-speed video microscopy and image analysis it was found that the two custom-made liposomes (one neuter and the other positively charged) tend to drift laterally, moving towards the wall and accumulating in the cell-free layer. In particular, neuter and cationic liposomes showed a comparable margination propensity, suggesting that the presence of blood cells governs the flow behavior independently on liposome surface charge.


Subject(s)
Drug Carriers/chemistry , Liposomes/chemistry , Microcirculation , Microfluidic Analytical Techniques , Static Electricity , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Healthy Volunteers , Humans , Injections, Intravenous , Liposomes/administration & dosage , Liposomes/blood , Particle Size , Surface Properties
12.
Curr Drug Deliv ; 14(2): 216-223, 2017.
Article in English | MEDLINE | ID: mdl-27440070

ABSTRACT

Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/ß-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release.


Subject(s)
Chitosan/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Drug Liberation , Glycerophosphates/chemistry , Hydrogels/chemistry , Acetic Acid/chemistry , Injections , Magnetic Resonance Spectroscopy , Molecular Structure , Rheology , Temperature
13.
J Biomed Mater Res B Appl Biomater ; 104(5): 1013-22, 2016 07.
Article in English | MEDLINE | ID: mdl-25997168

ABSTRACT

In this work the development of an experimental protocol to perform the in situ gel-paving of coronary stent is presented. Biocompatible aqueous blends of Pluronic F127 and sodium alginates are used as potential drug dosage system for pharmacological in situ treatment of coronary in-stent restenosis. Pluronic F127/alginate aqueous blend has the unique characteristic to be liquid at room condition and to form gel at physiological temperature. The proposed protocol is based on the blend injection on stent wall previously implanted in a flexible silicon pipe mimicking the coronary artery. Injected blend is warmed up until human body temperature achieving a soft gel, then it is reticulated by copper bivalent ions to obtain an hard gel. To test the gel paving resistance to erosion phenomena when it is exposed to fluid flux (i.e. blood flux) a dedicated device, (the Simulated Artery Device, SAD), was built to simulate the human circulatory apparatus. The SAD is an hydraulic circuit in which a buffer solution (at pH 7.4) was fluxed by a peristaltic pump through the pipe hosting the covered stent. Erosion tests were performed monitoring, by gravimetric and spectrophotometric methods, the residual mass anchored to stent mesh after given times. The obtained results showed that the in situ gel-paving developed protocol was efficacious and reliable. The gel-paving was completely eroded in a time of the same order of magnitude of the physiological period required to restore the coronary lesion (subsequent to the atheroma removal) and of a pharmacological therapy to inhibit the in-stent-restenosis pathology. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1013-1022, 2016.


Subject(s)
Alginates/chemistry , Coated Materials, Biocompatible/chemistry , Coronary Vessels , Models, Cardiovascular , Poloxamer/chemistry , Stents , Animals , Gels , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans
14.
Int J Pharm ; 495(2): 719-27, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26410757

ABSTRACT

Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,ß-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems.


Subject(s)
Drug Delivery Systems , Lactic Acid/chemistry , Nanoparticles , Peptides/chemistry , Polymers/chemistry , alpha-Tocopherol/administration & dosage , Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Emulsions , Hydrophobic and Hydrophilic Interactions , Polyesters , Solubility , Solvents/chemistry , alpha-Tocopherol/chemistry
15.
Curr Drug Metab ; 15(9): 882-92, 2014.
Article in English | MEDLINE | ID: mdl-25658127

ABSTRACT

Nucleic Acid Based Drugs (NABDs) constitute a class of promising and powerful therapeutic new agents with limited side effects, potentially useable against a wide range of diseases, including cancer. Among them, the short interfering RNAs (siRNAs), represent very effective molecules. Despite their in vitro efficacy, the major drawback that limits siRNAs usage consists in a difficult delivery due to their very low stability in physiological fluids, and to their limited membrane-permeability through physiological barriers. On the other hand, the liposomes (lipid bilayers closed in vesicles of various sizes) represent interesting drug delivery systems (DDSs) which can be tailored in order to get the best performance in terms of load, vesicle size and transfection yield. In this work, the current state of study in these two fields, and the connections between them, are briefly summarized.


Subject(s)
Gene Transfer Techniques , RNA, Small Interfering/administration & dosage , Animals , Humans , Liposomes , RNA Interference
16.
Transl Med UniSa ; 7: 6-11, 2013.
Article in English | MEDLINE | ID: mdl-24251250

ABSTRACT

Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented.

17.
Pharm Dev Technol ; 18(6): 1399-406, 2013.
Article in English | MEDLINE | ID: mdl-23066945

ABSTRACT

OBJECTIVE: The objective of this work is to prepare oral dosage systems based on enteric materials in order to verify their possible use as Colon-Specific Drug Delivery Systems (CSDDSs). METHODOLOGY: In particular, three different copolymers of methyl-methacrylate (MMA) - acrylic acid (AA) are synthesized with increasing percentage of MMA (from 70% to 73%) and they are used to produce microparticles by the double-emulsion solvent evaporation method. The microparticles, loaded using theophylline as model drug, are then tested for drug release under varying pH to reproduce what happens in the human GI tract. RESULTS: All the investigated systems have shown an effective pH sensitiveness: they show a good gastro-resistance, releasing the model drug only at higher pH, small intestine or colon, depending on the kind of used copolymer. CONCLUSION: The results confirm the usefulness of both the materials and the methods proposed in this study for colon-specific delivery applications.


Subject(s)
Colon/drug effects , Colon/metabolism , Drug Delivery Systems/methods , Theophylline/administration & dosage , Theophylline/chemistry , Acrylates/administration & dosage , Acrylates/chemistry , Emulsions/administration & dosage , Emulsions/chemistry , Humans , Hydrogen-Ion Concentration , Microspheres , Polymethyl Methacrylate/administration & dosage , Polymethyl Methacrylate/chemistry , Solubility , Solvents/chemistry
18.
ScientificWorldJournal ; 2013: 482910, 2013.
Article in English | MEDLINE | ID: mdl-24501580

ABSTRACT

Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested.


Subject(s)
Nebulizers and Vaporizers , Ultrasonics/methods , Aerosols , Drug Compounding/methods , Particle Size
19.
Eur J Pharm Biopharm ; 80(3): 471-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22285525

ABSTRACT

In this review, new approaches to the microencapsulation processes, widely used in the manufacturing of pharmaceutical products, are discussed focusing the attention on the emerging ultrasonic atomization technique. Fundamentals and novel aspects are presented, and advantages of ultrasonic atomization in terms of intensification and low energy requests are emphasized.


Subject(s)
Drug Compounding/instrumentation , Drug Compounding/methods , Nebulizers and Vaporizers , Ultrasonics/instrumentation , Ultrasonics/methods
20.
Transl Med UniSa ; 4: 3-11, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23905058

ABSTRACT

Development and optimization of novel production techniques for drug delivery systems are fundamental steps in the "from the bench to the bedside" process which is the base of translational medicine. In particular, in the current scenery where the need for reducing energy consumption, emissions, wastes and risks drives the development of sustainable processes, new pharmaceutical manufacturing does not constitute an exception. In this paper, concepts of process intensification are presented and their transposition in drug delivery systems production is discussed. Moreover, some examples on intensified techniques, for drug microencapsulation and granules drying, are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...