Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioengineering (Basel) ; 10(6)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37370617

ABSTRACT

The occupational risk of operators using display screen equipment (DSE) is usually evaluated according to the extent of time spent in active operator-DSE interactions. Risk assessment is based on activity data collected through questionnaires. We evaluated an original and innovative system that can objectively assess active operator-DSE interactions by collecting electrical impulses generated by the activation of mouse, keyboard and a camera that collects attentive eye-screen fixation. The main aim of this study was to evaluate the system's performance on an employee sample involved in the task of active reading and copying at a DSE workstation connected to the system. In the context of mandatory health surveillance at work, we enrolled 38 DSE operators with normal neuropsychological and eye assessments who were required to complete two predefined reading and writing tasks. The obtained results show that the system is able to collect activity data derived from operator-DSE interactions through screen fixation, keyboard tapping and mouse handling. In the copying task, the session duration as recorded by the system was highly related to the screen fixation time. In the copying task, mouse and keyboard activities were more strongly related to session duration than screen fixation. For the copying task, it was also possible to obtain individual profiles of operator-DSE interactions while performing the same standardized tasks. Collected data can allow an objective evaluation of active time spent by DSE operators at their workstations, thus allowing a more accurate occupational health risk assessment and management. Prospective analysis of individual operator-DSE interaction profiles can favor the setup of targeted preventive and organizational interventions from an of even wider worker wellbeing perspective.

2.
Beilstein J Nanotechnol ; 5: 927-36, 2014.
Article in English | MEDLINE | ID: mdl-24991531

ABSTRACT

Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...