Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328141

ABSTRACT

Lysine-specific demethylase 1 (LSD1 or KDM1A ) has emerged as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Among mCRPC subtypes, neuroendocrine prostate cancer (NEPC) is an exceptionally aggressive variant driven by lineage plasticity, an adaptive resistance mechanism to androgen receptor axis-targeted therapies. Our study shows that LSD1 expression is elevated in NEPC and associated with unfavorable clinical outcomes. Using genetic approaches, we validated the on-target effects of LSD1 inhibition across various models. We investigated the therapeutic potential of bomedemstat, an orally bioavailable, irreversible LSD1 inhibitor with low nanomolar potency. Our findings demonstrate potent antitumor activity against CRPC models, including tumor regressions in NEPC patient-derived xenografts. Mechanistically, our study uncovers that LSD1 inhibition suppresses the neuronal transcriptional program by downregulating ASCL1 through disrupting LSD1:INSM1 interactions and de-repressing YAP1 silencing. Our data support the clinical development of LSD1 inhibitors for treating CRPC - especially the aggressive NE phenotype. Statement of Significance: Neuroendocrine prostate cancer presents a clinical challenge due to the lack of effective treatments. Our research demonstrates that bomedemstat, a potent and selective LSD1 inhibitor, effectively combats neuroendocrine prostate cancer by downregulating the ASCL1- dependent NE transcriptional program and re-expressing YAP1.

2.
Clin Cancer Res ; 7(8): 2237-45, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11489797

ABSTRACT

During the progression of prostate cancer, molecular changes occur resulting in the autocrine production of a series of neurotrophins by the malignant cells. This is coupled with expression of high-affinity cognate receptors for these ligands, termed trk receptors, by these cancer cells. The binding of the neurotrophins to their trk receptors activates the receptor's latent tyrosine kinase activity inducing a series of signal transduction pathways within these prostate cancer cells. These molecular changes result in the acquisition by prostate cancer cells of a restricted requirement for these trk signaling pathways for optimal survival. CEP-701 is an indolocarbazole compound specifically designed as a potent inhibitor (IC(50), 4 nM) of the tyrosine kinase activity of the trk receptors required for initiation of these survival pathways. In the present studies, the consequences of CEP-701 inhibition of these trk signaling survival pathways were tested in vivo using both rat (R3327 AT 6.3 and H) and human (TSU-pr1 and CWR-22Rv1) prostatic cancer models. These in vivo studies demonstrated that treatment with CEP-701 inhibits the growth of both rodent and human prostate cancers, without being toxic to the normal tissue including the host prostate. Because of this selective effect, CEP-701 inhibits metastasis and growth of both primary and metastatic sites of prostate cancer. Based upon this profile, long-term survival studies were performed using the slow-growing Dunning H rat prostate cancer model. For these latter studies, the dosing regimen was 10 mg CEP-701/kg/dose twice a day via gavage 5 days a week. This regimen maintains CEP-701 tumor tissue concentrations of 25-50 nM. Such chronic dosing increased (P < 0.001) the median survival of rats bearing the slow growing H prostate cancers from 408 days (395-432 days, 95% confidence interval) for the vehicle group (n = 18) to 566 days (497-598 days, 95% confidence interval) for the CEP-701-treated group (n = 24).


Subject(s)
Apoptosis/drug effects , Indoles , Neoplasm Metastasis/prevention & control , Prostatic Neoplasms/drug therapy , Receptor, trkA/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Cell Division/drug effects , Cell Line , Disease Models, Animal , Furans , Humans , Male , Mice , Mice, Nude , Neoplasm Metastasis/pathology , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/drug effects , Prostatic Neoplasms/pathology , Rats , Survival Analysis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...