Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37986766

ABSTRACT

The visual word form area in the occipitotemporal sulcus (OTS), here referred to as OTS-words, responds more strongly to text than other visual stimuli and is crucial for reading. We hypothesized, that this text preference may be driven by a preference for reading tasks, as in most prior fMRI studies only the text stimuli were readable. Hence, we performed three fMRI experiments (N=15) and systematically varied the participant's task and the stimulus, investigating mOTS-words and pOTS-words subregions. In experiment 1, we contrasted text stimuli with non-readable visual stimuli (faces, limbs, houses, objects). Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words in text or emoji formats. In experiment 3, participants performed a reading or a color task on compound words in text or emoji format. Using experiment 1 data, we identified mOTS-words and pOTS-words by contrasting texts with non-readable stimuli. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both text and emoji formats. In experiment 3, surprisingly, both subregions showed higher responses to compound words in emoji than text format. Moreover, mOTS-words showed higher responses during the reading than the color task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode the visual stimulus, while responses in mOTS-words encode both stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.

2.
Brain Struct Funct ; 228(2): 449-462, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36244002

ABSTRACT

Recent theories on the neural correlates of face identification stressed the importance of the available identity-specific semantic and affective information. However, whether such information is essential for the emergence of neural signal of familiarity has not yet been studied in detail. Here, we explored the shared representation of face familiarity between perceptually and personally familiarized identities. We applied a cross-experiment multivariate pattern classification analysis (MVPA), to test if EEG patterns for passive viewing of personally familiar and unfamiliar faces are useful in decoding familiarity in a matching task where familiarity was attained thorough a short perceptual task. Importantly, no additional semantic, contextual, or affective information was provided for the familiarized identities during perceptual familiarization. Although the two datasets originate from different sets of participants who were engaged in two different tasks, familiarity was still decodable in the sorted, same-identity matching trials. This finding indicates that the visual processing of the faces of personally familiar and purely perceptually familiarized identities involve similar mechanisms, leading to cross-classifiable neural patterns.


Subject(s)
Facial Recognition , Recognition, Psychology , Humans , Recognition, Psychology/physiology , Visual Perception , Semantics , Pattern Recognition, Visual/physiology , Facial Recognition/physiology
3.
Brain Res ; 1796: 148094, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36116487

ABSTRACT

In a recent study using cross-experiment multivariate classification of EEG patterns, we found evidence for a shared familiarity signal for faces, patterns of neural activity that successfully separate trials for familiar and unfamiliar faces across participants and modes of familiarization. Here, our aim was to expand upon this research to further characterize the spatio-temporal properties of this signal. By utilizing the information content present for incidental exposure to personally familiar and unfamiliar faces, we tested how the information content in the neural signal unfolds over time under different task demands - giving truthful or deceptive responses to photographs of genuinely familiar and unfamiliar individuals. For this goal, we re-analyzed data from two previously published experiments using within-experiment leave-one-subject-out and cross-experiment classification of face familiarity. We observed that the general face familiarity signal, consistent with its previously described spatio-temporal properties, is present for long-term personally familiar faces under passive viewing, as well as for acknowledged and concealed familiarity responses. Also, central-posterior regions contain information related to deception. We propose that signals in the 200-400 ms window are modulated by top-down task-related anticipation, while the patterns in the 400-600 ms window are influenced by conscious effort to deceive. To our knowledge, this is the first report describing the representational dynamics of concealed knowledge for faces, using time-resolved multivariate classification.


Subject(s)
Friends , Recognition, Psychology , Consciousness , Humans , Motivation , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology
4.
Cereb Cortex ; 32(12): 2590-2601, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34628490

ABSTRACT

We explored the neural signatures of face familiarity using cross-participant and cross-experiment decoding of event-related potentials, evoked by unknown and experimentally familiarized faces from a set of experiments with different participants, stimuli, and familiarization-types. Human participants of both sexes were either familiarized perceptually, via media exposure, or by personal interaction. We observed significant cross-experiment familiarity decoding involving all three experiments, predominantly over posterior and central regions of the right hemisphere in the 270-630 ms time window. This shared face familiarity effect was most prominent across the Media and the Personal, as well as between the Perceptual and Personal experiments. Cross-experiment decodability makes this signal a strong candidate for a general neural indicator of face familiarity, independent of familiarization methods, participants, and stimuli. Furthermore, the sustained pattern of temporal generalization suggests that it reflects a single automatic processing cascade that is maintained over time.


Subject(s)
Evoked Potentials , Recognition, Psychology , Face , Female , Head , Humans , Male , Pattern Recognition, Visual/physiology , Photic Stimulation , Recognition, Psychology/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...