Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(14): e112907, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37367474

ABSTRACT

Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.


Subject(s)
Interferons , Virus Diseases , Humans , Interferon Regulatory Factor-3/metabolism , Antiviral Agents/pharmacology , Immunity, Innate , Cytokines , Virus Diseases/drug therapy
2.
Nature ; 597(7874): 114-118, 2021 09.
Article in English | MEDLINE | ID: mdl-34261128

ABSTRACT

In mammals, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide 2'3'-cGAMP in response to cytosolic DNA and this triggers an antiviral immune response. cGAS belongs to a large family of cGAS/DncV-like nucleotidyltransferases that is present in both prokaryotes1 and eukaryotes2-5. In bacteria, these enzymes synthesize a range of cyclic oligonucleotides and have recently emerged as important regulators of phage infections6-8. Here we identify two cGAS-like receptors (cGLRs) in the insect Drosophila melanogaster. We show that cGLR1 and cGLR2 activate Sting- and NF-κB-dependent antiviral immunity in response to infection with RNA or DNA viruses. cGLR1 is activated by double-stranded RNA to produce the cyclic dinucleotide 3'2'-cGAMP, whereas cGLR2 produces a combination of 2'3'-cGAMP and 3'2'-cGAMP in response to an as-yet-unidentified stimulus. Our data establish cGAS as the founding member of a family of receptors that sense different types of nucleic acids and trigger immunity through the production of cyclic dinucleotides beyond 2'3'-cGAMP.


Subject(s)
Drosophila melanogaster/immunology , Nucleotidyltransferases/immunology , Receptors, Pattern Recognition/metabolism , Viruses/immunology , Amino Acid Sequence , Animals , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/virology , Female , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Ligands , Male , Membrane Proteins/metabolism , Models, Molecular , NF-kappa B/metabolism , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/classification , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/metabolism , RNA, Double-Stranded/analysis , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Receptors, Pattern Recognition/classification , Receptors, Pattern Recognition/deficiency , Receptors, Pattern Recognition/immunology
3.
Nucleic Acids Res ; 48(20): 11421-11433, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33205822

ABSTRACT

IRF3 and IRF7 are critical transcription factors in the innate immune response. Their activation is controlled by phosphorylation events, leading to the formation of homodimers that are transcriptionally active. Phosphorylation occurs when IRF3 is recruited to adaptor proteins via a positively charged surface within the regulatory domain of IRF3. This positively charged surface also plays a crucial role in forming the active homodimer by interacting with the phosphorylated sites stabilizing the homodimer. Here, we describe a distinct molecular interaction that is responsible for adaptor docking and hence phosphorylation as well as a separate interaction responsible for the formation of active homodimer. We then demonstrate that IRF7 can be activated by both MAVS and STING in a manner highly similar to that of IRF3 but with one key difference. Regulation of IRF7 appears more tightly controlled; while a single phosphorylation event is sufficient to activate IRF3, at least two phosphorylation events are required for IRF7 activation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Dimerization , Genes, Reporter , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/chemistry , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-7/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/immunology , NF-kappaB-Inducing Kinase
4.
EMBO Rep ; 21(12): e51252, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33112036

ABSTRACT

Respiratory infections, like the current COVID-19 pandemic, target epithelial cells in the respiratory tract. Alveolar macrophages (AMs) are tissue-resident macrophages located within the lung. They play a key role in the early phases of an immune response to respiratory viruses. AMs are likely the first immune cells to encounter SARS-CoV-2 during an infection, and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first cytokines produced upon viral infection. In this study, AMs from non-infectious donors are challenged with SARS-CoV-2. We demonstrate that challenged AMs are incapable of sensing SARS-CoV-2 and of producing an IFN response in contrast to other respiratory viruses, like influenza A virus and Sendai virus, which trigger a robust IFN response. The absence of IFN production in AMs upon challenge with SARS-CoV-2 could explain the initial asymptotic phase observed during COVID-19 and argues against AMs being the sources of pro-inflammatory cytokines later during infection.


Subject(s)
COVID-19/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , SARS-CoV-2/immunology , Antiviral Agents/immunology , COVID-19/virology , Cells, Cultured , Cytokines/immunology , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Immune Evasion , Interferon Type I/immunology , Lung/immunology , Lung/virology , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...