Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 190: 112423, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608790

ABSTRACT

Aging is associated with impaired strength and power during isometric and shortening contractions, however, during lengthening (i.e., eccentric) contractions, strength is maintained. During daily movements, muscles undergo stretch-shortening cycles (SSCs). It is unclear whether the age-related maintenance of eccentric strength offsets age-related impairments in power generation during SSCs owing to the utilization of elastic energy or other cross-bridge based mechanisms. Here we investigated how aging influences SSC performance at the single muscle fibre level and whether performing active lengthening prior to shortening protects against age-related impairments in power generation. Single muscle fibres from the psoas major of young (∼8 months; n = 31 fibres) and old (∼32 months; n = 41 fibres) male F344BN rats were dissected and chemically permeabilized. Fibres were mounted between a force transducer and length controller and maximally activated (pCa 4.5). For SSCs, fibres were lengthened from average sarcomere lengths of 2.5 to 3.0 µm and immediately shortened back to 2.5 µm at both fast and slow (0.15 and 0.60 Lo/s) lengthening and shortening speeds. The magnitude of the SSC effect was calculated by comparing work and power during shortening to an active shortening contraction not preceded by active lengthening. Absolute isometric force was ∼37 % lower in old compared to young rat single muscle fibres, however, when normalized to cross-sectional area (CSA), there was no longer a significant difference in isometric force between age groups, meanwhile there was an ∼50 % reduction in absolute power in old as compared with young. We demonstrated that SSCs significantly increased power production (75-110 %) in both young and old fibres when shortening occurred at a fast speed and provided protection against power-loss with aging. Therefore, in older adults during everyday movements, power is likely 'protected' in part due to the stretch-shortening cycle as compared with isolated shortening contractions.


Subject(s)
Aging , Muscle Contraction , Muscle Fibers, Skeletal , Muscle Strength , Animals , Male , Rats , Aging/pathology , Aging/physiology , Isometric Contraction/physiology , Kinetics , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Muscle Strength/physiology , Rats, Inbred BN , Rats, Inbred F344
2.
Exp Physiol ; 109(5): 711-728, 2024 May.
Article in English | MEDLINE | ID: mdl-38500268

ABSTRACT

The abrupt cessation of ovarian hormone release is associated with declines in muscle contractile function, yet the impact of gradual ovarian failure on muscle contractility across peri-, early- and late-stage menopause remains unclear. In this study, a 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model was used to examine time course changes in muscle mechanical function. Plantar flexors of female mice (VCD: n = 10; CON: n = 8) were assessed at 40 (early perimenopause), 80 (late perimenopause), 120 (menopause onset) and 176 (late menopause) days post-initial VCD injection. A torque-frequency relationship was established across a range of frequencies (10-200 Hz). Isotonic dynamic contractions were elicited against relative loads (10-80% maximal isometric torque) to determine the torque-velocity-power relationship. Mice then performed a fatigue task using intermittent 100 Hz isometric contractions until torque dropped by 60%. Recovery of twitch, 10 Hz and 100 Hz torque were tracked for 10 min post-task failure. Additionally, intact muscle fibres from the flexor digitorum brevis underwent a fatigue task (50 repetitions at 70 Hz), and 10 and 100 Hz tetanic [Ca2+] were monitored for 10 min afterward. VCD mice exhibited 16% lower twitch torque than controls across all time points. Apart from twitch torque, 10 Hz torque and 10 Hz tetanic [Ca2+], where VCD showed greater values relative to pre-fatigue during recovery, no significant differences were observed between control and VCD mice during recovery. These results indicate that gradual ovarian failure has minimal detriments to in vivo muscle mechanical function, with minor alterations observed primarily for low-frequency stimulation during recovery from fatigue.


Subject(s)
Calcium , Muscle Contraction , Muscle Fatigue , Muscle, Skeletal , Vinyl Compounds , Animals , Female , Mice , Vinyl Compounds/pharmacology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/metabolism , Muscle Fatigue/physiology , Muscle Contraction/physiology , Calcium/metabolism , Torque , Mice, Inbred C57BL , Cyclohexenes/pharmacology , Isometric Contraction/physiology , Primary Ovarian Insufficiency/physiopathology , Primary Ovarian Insufficiency/metabolism
3.
Eur J Appl Physiol ; 123(4): 821-832, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36484861

ABSTRACT

PURPOSE: It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS: At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION: Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal , Male , Humans , Muscle Fibers, Skeletal/physiology , Muscle Contraction/physiology , Isometric Contraction/physiology , Quadriceps Muscle/physiology , Knee Joint/physiology , Muscle, Skeletal/physiology , Torque , Electromyography
4.
J Musculoskelet Neuronal Interact ; 22(4): 504-513, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36458388

ABSTRACT

OBJECTIVES: Females tend to fatigue less than males after isometric exercise, but less is clear for isotonic exercise. Further, there have been relatively few sex comparisons for fatigability of the plantar flexors (PFs). We sought to investigate potential sex differences in contractile properties after a sustained maximal voluntary isometric contraction (MVIC) and isotonic contractions. METHODS: Twenty-seven physically active males (n=14; 22±2 yrs) and females (n=13; 21±2 yrs) randomly performed a 2 min MVIC and 120 concentric isotonic (30% MVIC) contractions for the PFs on separate visits. Before and after each fatiguing task, muscle activation was obtained from brief MVICs, which was followed (~2 sec) by tibial nerve stimulation at rest. Contractile properties including peak twitch, absolute and normalized time to peak twitch, and half relaxation time were calculated. RESULTS: No sex differences existed for fatigue-induced changes in muscle activation (p=0.09-0.41; d=0.33-0.69) or contractile properties (p=0.19-0.96; d=0.06-0.94). CONCLUSIONS: Peripheral fatigue, as indicated by contractile parameters, did not differ between sexes after isometric or isotonic exercise. The PFs similar fiber type proportions between sexes or greater fiber type heterogeneity may explain why sex differences in fatigability, though common in other muscle groups (e.g., knee extensors), were not expressed in this muscle group.


Subject(s)
Muscle Contraction , Muscle Fatigue , Female , Humans , Male , Exercise Therapy , Isometric Contraction , Sex Characteristics , Adolescent , Young Adult , Adult
5.
Physiol Rep ; 9(9): e14821, 2021 05.
Article in English | MEDLINE | ID: mdl-33991453

ABSTRACT

The purpose of this study was to investigate potential sex differences in the fatigue- and recovery-induced responses of isometric strength and power, as well as select dynamic contractile parameters after isometric and isotonic plantar flexor (PF) contractions. Healthy males (n = 12; age = 21.8 ± 2.2 years) and females (n = 14; age = 21.4 ± 2.5 years) performed a 2-min maximal voluntary isometric contraction and 120 concentric isotonic (30% peak isometric torque) contractions of the PFs on separate visits. Isometric strength, isotonic power, as well as torque- and velocity-related parameters were recorded before, immediately after, and throughout 10 min of recovery. Rate of EMG rise (RER) for the medial gastrocnemius (MG) and soleus was also obtained. All measures responded similarly between sexes after both fatiguing modalities (p > 0.05), except RER of the MG which, in males demonstrated both, a greater decrease during isotonic contractions (p = 0.038, ηp2  = 0.174) and more rapid recovery after isometric exercise (p = 0.043, ηp2  = 0.166). Although not significant, a nearly large effect size was demonstrated for the fatigue-induced decrease in isometric strength (p = 0.061; d = 0.77) due to relative decreases tending to be greater in males (-29% vs. -17%). Regardless of fatiguing modality, sex differences were minimal for fatigue and recovery-related responses in muscle function for the PFs, although the difference for RER may indicate a unique origin of fatigue. Further support for the disassociation between the response in isometric strength and power after fatiguing exercise was also demonstrated.


Subject(s)
Isometric Contraction , Muscle Fatigue , Sex Characteristics , Female , Humans , Male , Muscle Strength , Muscle, Skeletal/physiology , Torque , Young Adult
6.
J Geriatr Phys Ther ; 44(2): 74-81, 2021.
Article in English | MEDLINE | ID: mdl-31917715

ABSTRACT

BACKGROUND AND PURPOSE: Rate of force development (RFD) is influential, and possibly more influential than other muscular performance parameters, for mobility in older adults. However, only a few studies have investigated this matter, and this has not been examined for the plantar flexors (PFs). The purpose of this study was to examine the contribution of PF RFD and other common tests of muscular performance to Up-and-Go (UG) performance and walking speed (WS) in older adults. METHODS: Twenty-six (19 females) healthy, community-dwelling older adults (73.7 ± 4.9 years) were recruited from a senior citizen center for this observational study. Handgrip strength, UG performance, as well as preferred and maximal WS were obtained. Time taken to complete 5-chair rises and the number of chair rises completed in 30 seconds were recorded. Rate of force development of the PFs was obtained during a rapid, bilateral calf raise performed on a force plate. Hierarchical multiple linear regression was used to identify significant predictors, after adjusting for physical activity level and body mass index, of mobility (ie, UG, preferred and maximal WS). RESULTS AND DISCUSSION: No muscular performance variables correlated with preferred WS. Rate of force development (adjusted R2 = 0.356; P = .008) and handgrip strength (adjusted R2 = 0.293; P = .026) were the only predictors of maximal WS and accounted for a 21.7% and 16.1% change in R2, respectively, after accounting for physical activity level and body mass index. Rate of force development was the only predictor of UG performance (adjusted R2 = 0.212; P = .006) and accounted for a 29.2% change in R2 after adjustment variables were applied. CONCLUSIONS: Compared to common assessments of muscular performance, such as handgrip strength and chair rise performance, PF RFD was a greater predictor of mobility in older adults. These findings, in conjunction with recent reports, indicate that the assessment of RFD likely complements strength testing, thereby enabling a more robust assessment of functional decline in older adults.


Subject(s)
Geriatric Assessment/methods , Muscle Strength/physiology , Muscle, Skeletal/physiology , Physical Functional Performance , Aged , Female , Hand Strength/physiology , Humans , Independent Living , Male , Predictive Value of Tests , Walking Speed/physiology
7.
Front Physiol ; 12: 756626, 2021.
Article in English | MEDLINE | ID: mdl-35082686

ABSTRACT

Introduction: The increasingly popular microbiopsy is an appealing alternative to the more invasive Bergström biopsy given the challenges associated with harvesting skeletal muscle in older populations. Parameters of muscle fiber morphology and composition derived from the microbiopsy have not been compared between young and older adults. Purpose: The purpose of this study was to examine muscle fiber morphology and composition in young (YM) and older (OM) males using the microbiopsy sampling technique. A secondary aim was to determine if specific strength is associated with serum levels of C-terminal agrin fragment [CAF; an indicator of neuromuscular junction (NMJ) degradation]. Methods: Thirty healthy, YM (n = 15, age = 20.7 ± 2.2 years) and OM (n = 15, age = 71.6 ± 3.9 years) underwent ultrasound imaging to determine whole-muscle cross-sectional area (CSA) of the vastus lateralis and rectus femoris as well as isometric and isokinetic (60°â‹…s-1 and 180°â‹…s-1) peak torque testing of the knee extensors. Microbiopsy samples of the vastus lateralis were collected from 13 YM and 11 OM, and immunofluorescence was used to calculate CSA and proportion of type I and type II fibers. Results: Peak torque was lower in OM at all velocities (p ≤ 0.001; d = 1.39-1.86) but only lower at 180°â‹…s-1 (p = 0.003; d = 1.23) when normalized to whole-muscle CSA. Whole-muscle CSA was smaller in OM (p = 0.001; d = 1.34), but atrophy was not present at the single fiber level (p > 0.05). Per individual, ∼900 fibers were analyzed, and type I fiber CSA was larger (p = 0.05; d = 0.94) in OM which resulted in a smaller type II/I fiber CSA ratio (p = 0.015; d = 0.95). CAF levels were not sensitive to age (p = 0.159; d = 0.53) nor associated with specific strength or whole-muscle CSA in OM. Conclusion: The microbiopsy appears to be a viable alternative to the Bergström biopsy for histological analyses of skeletal muscle in older adults. NMJ integrity was not influential for age-related differences in specific strength in our healthy, non-sarcopenic older sample.

8.
Arch Gerontol Geriatr ; 91: 104215, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32763756

ABSTRACT

PURPOSE: To compare sit-to-stand (STS) kinetics in young (YM) and older (OM) males and determine correlates of STS performance. METHODS: YM (n = 15, age = 20.7 ±â€¯2.2 yrs) and OM (n = 15, age = 71.6 ±â€¯3.9 yrs) performed a single STS task as quickly as possible on a force plate and the vertical ground reaction force (VGRF) signal was analyzed. Peak VGRF, as well as peak (100 ms rolling average), early (minimum VGRF to 50% peak VGRF), late (50% peak VGRF to peak VGRF), and overall (minimum VGRF to peak VGRF) rate of force development (RFD) were calculated. Power (absolute and relative) and velocity parameters as well as rate of electromyography rise (RER) were also obtained. RESULTS: STS time, average power, early RFD, and lower limb lean mass were similar between groups (p > 0.05). All other power, velocity, RFD, and RER measures were lower in OM (p < 0.05; d = 0.41-2.19). Peak VGRF and all RFD measures, except late RFD, were strongly correlated with STS performance in OM, while peak VGRF and peak RFD were only moderately correlated with performance in YM. CONCLUSIONS: Most kinetic variables, except absolute average power, were diminished in OM, and there was a preferential decrease in late RFD compared to early RFD. Peak VGRF and RFD exhibited stronger correlations with STS time and power in OM compared to YM, and early RFD appears to be more influential for STS performance than late RFD. These findings may be useful for practitioners/clinicians involved in designing interventions aimed at optimizing STS performance in older adults.

9.
PLoS One ; 15(4): e0231907, 2020.
Article in English | MEDLINE | ID: mdl-32324776

ABSTRACT

PURPOSE: The purpose of this study was to compare early and late rapid torque parameters of the plantar flexors (PFs) in middle-aged (MM) and older (OM) males, and determine the effect of normalization to peak torque (PT) and muscle cross-sectional area (CSA). METHODS: Twenty-nine healthy, MM (n = 14; 45 ± 2 yrs) and OM (n = 15; 65 ± 3 yrs) performed rapid, maximal isometric contractions of the PFs. PT, as well as rate of torque development and impulse during the early (0-50 ms; RTD0-50, IMP0-50) and late (100-200 ms; RTD100-200, IMP100-200) contraction phases were calculated. Torque at 50 (TQ50), 100 (TQ100), and 200 (TQ200) ms was also obtained. CSA and echo-intensity (EI) of the gastrocnemii were acquired via ultrasonography. Torque variables were normalized to PT and CSA. Rate of EMG rise (RER) for the medial gastrocnemius was calculated at 30, 50 and 75 ms. RESULTS: TQ100 (MM = 69.71 ± 16.85 vs. OM = 55.99 ± 18.54 Nm; p = 0.046), TQ200 (MM = 114.76 ± 26.79 vs. OM = 91.56 ± 28.10 Nm; p = 0.031), and IMP100-200 (MM = 4.79 ± 1.11 vs. OM = 3.83 ± 1.17 Nm·s; p = 0.032) were lower in OM. PT, TQ50, RTD0-50, IMP0-50, RTD100-200, RER, CSA, and EI were similar between groups (p > 0.05). No differences were found for normalized torque variables (p > 0.05). EI was moderately associated with normalized torque parameters only (r = -0.38 --0.45). RER, at 75 ms, was moderately correlated with early, absolute torque measures and rapid torque variables made relative to PT and CSA (r = 0.41 --0.64). CONCLUSION: Late rapid torque parameters of the PFs were preferentially impaired in OM compared to MM, and PT as well as CSA appeared to mediate this result.


Subject(s)
Foot/physiology , Torque , Aged , Humans , Male , Middle Aged , Time Factors
10.
Exp Gerontol ; 125: 110677, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31374246

ABSTRACT

Little evidence exists regarding the contribution of torque and velocity to the age-related decrease in peak power (PP) for the plantar flexors (PFs). A comprehensive assessment of PF neuromuscular function is necessary to elucidate age-related changes, especially between middle-aged and older adults, in order to identify early, age-related decrements. Thus, the purpose of this study was to examine neuromuscular function of the PFs in middle-aged and older males, and identify predictors of PP. Twenty-eight healthy, middle-aged (n = 13; 45.1 ±â€¯2.7 yrs) and older (n = 15; 65.3 ±â€¯3.2 yrs) males performed concentric isotonic PF contractions ranging in intensity from 20% to 70% isometric strength using a dynamometer. PP in addition to velocity and torque at the moment in time PP occurred, as well as the rate of velocity, torque (RTD), and power (RPD) development were recorded. The rate of electromyography rise (RER) was derived from the linear slope of the normalized electromyography signal. Isometric and concentric dynamic strength were assessed, as well as cross-sectional area and muscle quality (i.e., echo intensity) of the PFs via panoramic ultrasonography. The relationship between serum c-terminal agrin levels and select variables was examined to explore the potential role of neuromuscular junction deterioration. Appendicular lean mass and physical activity level were similar between groups (p > 0.05), and only PP (p = 0.046; d = 0.79), RPD (p = 0.026; d = 0.90), RTD (p = 0.022; d = 0.91), and RER (p = 0.010; d = 1.04) were lower in older males. When groups were collapsed, RTD was the only significant predictor of PP, while c-terminal agrin levels were not associated with any variables. Our findings indicate that PP and time-dependent parameters of muscle activation and contractile function of the PFs are dramatically diminished in older adults compared to middle-aged adults. PP is produced at the same velocity and relative intensity in middle-aged and older males, and RTD is most influential for PP. The inability of the PFs to be rapidly activated appeared to be influential for the age-related impairment in PP and time-dependent contractile parameters.


Subject(s)
Aging/physiology , Lower Extremity/physiology , Muscle Strength , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Adult , Aged , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...