Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 2400, 2013.
Article in English | MEDLINE | ID: mdl-23929068

ABSTRACT

Thermal conductivity of mantle materials controlling the heat balance and thermal evolution of the Earth remains poorly constrained as the available experimental and theoretical techniques are limited in probing minerals under the relevant conditions. We report measurements of thermal conductivity of MgO at high pressure up to 60 GPa and 300 K via diamond anvil cells using the time-domain thermoreflectance technique. These measurements are complemented by model calculations which take into account the effect of temperature and mass disorder of materials within the Earth. Our model calculations agree with the experimental pressure dependencies at 300 and 2000 K for MgO. Furthermore, they predict substantially smaller pressure dependence for mass disordered materials as the mechanism of scattering changes. The calculated thermal conductivity at the core-mantle boundary is smaller than the majority of previous predictions resulting in an estimated total heat flux of 10.4 TW, which is consistent with modern geomodeling estimates.


Subject(s)
Gravitation , Magnesium Oxide/chemistry , Minerals/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Materials Testing , Molecular Weight , Pressure , Temperature , Thermal Conductivity
2.
J Phys Chem A ; 115(40): 11033-8, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21932811

ABSTRACT

Raman spectroscopy and synchrotron X-ray diffraction are used to examine the high-pressure behavior of tetramethylammonium borohydride (TMAB) to 40 GPa at room temperature. The measurements reveal weak pressure-induced structural transitions around 5 and 20 GPa. Rietveld analysis and Le Bail fits of the powder diffraction data based on known structures of tetramethylammonium salts indicate that the transitions are mediated by orientational ordering of the BH(4)(-) tetrahedra followed by tilting of the (CH(3))(4)N(+) groups. X-ray diffraction patterns obtained during pressure release suggest reversibility with a degree of hysteresis. Changes in the Raman spectrum confirm that these transitions are not accompanied by bonding changes between the two ionic species. At ambient conditions, TMAB does not possess dihydrogen bonding, and Raman data confirms that this feature is not activated upon compression. The pressure-volume equation of state obtained from the diffraction data gives a bulk modulus [K(0) = 5.9(6) GPa, K(0)' = 9.6(4)] slightly lower than that observed for ammonia borane. Raman spectra obtained over the entire pressure range (spanning over 40% densification) indicate that the intramolecular vibrational modes are largely coupled.


Subject(s)
Borohydrides/chemistry , Pressure , Quaternary Ammonium Compounds/chemistry , Spectrum Analysis, Raman , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...