Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Motor Control ; 27(1): 71-95, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36316008

ABSTRACT

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats. In addition, we investigated the effects of similar distal tibial nerve stimulation on overground walking of one male cat that had a transtibial, bone-anchored prosthesis for 29 months and, thus, had no cutaneous/proprioceptive feedback from the foot. In all treadmill conditions, cats walked with intact cutaneous feedback (control), with right fore- and hindpaw pads anesthetized by lidocaine injections, and with a combination of anesthesia and electrical stimulation of the ipsilateral distal tibial nerve during the stance phase at 1.2× threshold of afferent activation. Electrical stimulation of the distal tibial nerve during the stance phase of walking with anesthetized ipsilateral paw pads reversed or significantly reduced the effects of paw pad anesthesia on several kinematic variables, including lateral center of mass shift, cycle and swing durations, and duty factor. We also found that stimulation of the residual distal tibial nerve in the prosthetic hindlimb often had different effects on kinematics compared with stimulation of the intact hindlimb with paw anesthetized. We suggest that stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve provides functionally meaningful motion-dependent sensory feedback, and stimulation responses depend on limb conditions.


Subject(s)
Anesthesia , Walking , Animals , Male , Female , Humans , Walking/physiology , Locomotion/physiology , Electric Stimulation , Tibial Nerve
2.
Mil Med ; 186(Suppl 1): 688-695, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33499499

ABSTRACT

INTRODUCTION: The three major unresolved problems in bone-anchored limb prosthetics are stable, infection-free integration of skin with a percutaneous bone implant, robust skeletal fixation between the implant and host bone, and a secure interface of sensory nerves and muscles with a prosthesis for the intuitive bidirectional prosthetic control. Here we review results of our completed work and report on recent progress. MATERIALS AND METHODS: Eight female adult cats received skin- and bone-integrated pylon (SBIP) and eight male adult cats received SBIP-peripheral neural interface (PNI) pylon into the right distal tibia. The latter pylons provided PNI for connection between a powered sensing transtibial prosthesis and electrodes in residual soleus muscle and on residual distal tibial nerve. If signs of infection were absent 28-70 days after implantation, cats started wearing a passive prosthesis. We recorded and analyzed full-body mechanics of level and slope locomotion in five cats with passive prostheses and in one cat with a powered sensing prosthesis. We also performed histological analyses of tissue integration with the implants in nine cats.Four pigs received SBIPs into the left hindlimb and two pigs-into the left forelimb. We recorded vertical ground reaction forces before amputation and following osseointegration. We also conducted pullout postmortem tests on the implanted pylons. One pig received in dorsum the modified SBIPs with and without silver coating. RESULTS: Six cats from the SBIP groups had implant for 70 days. One cat developed infection and did not receive prosthesis. Five cats had pylon for 148 to 183 days, showed substantial loading of the prosthesis during locomotion (40.4% below presurgery control), and demonstrated deep ingrowth of skin and bone tissue into SBIP (over 60%). Seven of eight cats from the SBIP-PNI group demonstrated poor pylon integration without clinical signs of infection. One cat had prosthesis for 824 days (27 months). The use of the bidirectionally controlled prosthesis by this animal during level walking demonstrated increased vertical loading to nearly normal values, although the propulsion force was significantly reduced.From the study on pigs, it was found that symmetry in loading between the intact and prosthetic limbs during locomotion was 80 ± 5.5%. Skin-implant interface was infection-free, but developed a stoma, probably because of the high mobility of the skin and soft tissues in the pig's thigh. Dorsal implantation resulted in the infection-free deep ingrowth of skin into the SBIP implants. CONCLUSIONS: Cats with SBIP (n = 5) and SBIP-PNI (n = 1) pylons developed a sound interface with the residuum skin and bone and demonstrated substantial loading of prosthetic limb during locomotion. One animal with SBIP developed infection and seven cats with SBIP-PNI demonstrated poor bone integration without signs of infection. Future studies of the SBIP-PNI should focus on reliability of integration with the residuum. Ongoing study with pigs requires decreasing the extra mobility of skin and soft tissues until the skin seal is developed within the SBIP implant.


Subject(s)
Bone and Bones , Animals , Artificial Limbs , Osseointegration , Porosity , Reproducibility of Results , Swine
3.
J Biomech ; 76: 74-83, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29861094

ABSTRACT

Ongoing animal preclinical studies on transcutaneous bone-anchored prostheses have aimed to improve biomechanics of prosthetic locomotion in people with limb loss. It is much less common to translate successful developments in human biomechanics and prosthetic research to veterinary medicine to treat animals with limb loss. Current standard of care in veterinary medicine is amputation of the whole limb if a distal segment cannot be salvaged. Bone-anchored transcutaneous prostheses, developed for people with limb loss, could be beneficial for veterinary practice. The aim of this study was to examined if and how cats utilize the limb with a bone-anchored passive transtibial prosthesis during level and slope walking. Four cats were implanted with a porous titanium implant into the right distal tibia. Ground reaction forces and full-body kinematics were recorded during level and slope (±50%) walking before and 4-6 months after implantation and prosthesis attachment. The duty factor of the prosthetic limb exceeded zero in all cats and slope conditions (p < 0.05) and was in the range of 45.0-60.6%. Thus, cats utilized the prosthetic leg for locomotion instead of walking on three legs. Ground reaction forces, power and work of the prosthetic limb were reduced compared to intact locomotion, whereas those of the contralateral hind- and forelimbs increased (p < 0.05). This asymmetry was likely caused by insufficient energy generation for propulsion by the prosthetic leg, as no signs of pain or discomfort were observed in the animals. We concluded that cats could utilize a unilateral bone-anchored transtibial prosthesis for quadrupedal level and slope locomotion.


Subject(s)
Artificial Limbs , Bone-Anchored Prosthesis , Walking/physiology , Animals , Biomechanical Phenomena , Cats , Hindlimb , Kinetics , Tibia
4.
Clin Biomech (Bristol, Avon) ; 29(3): 336-49, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24405567

ABSTRACT

BACKGROUND: Despite the number of advantages of bone-anchored prostheses, their use in patients is limited due to the lack of complete skin-implant integration. The objective of the present study was to develop an animal model that would permit both detailed investigations of gait with a bone-anchored limb prosthesis and histological analysis of the skin-implant-bone interface after physiological loading of the implant during standing and walking. METHODS: Full-body mechanics of walking in two cats were recorded and analyzed before and after implantation of a percutaneous porous titanium pylon into the right tibia and attachment of a prosthesis. The rehabilitation procedures included initial limb casting, progressively increasing loading on the implant, and standing and locomotor training. Detailed histological analysis of bone and skin ingrowth into implant was performed at the end of the study. FINDINGS: The two animals adopted the bone-anchored prosthesis for standing and locomotion, although loads on the prosthetic limb during walking decreased by 22% and 62%, respectively, 4months after implantation. The animals shifted body weight to the contralateral side and increased propulsion forces by the contralateral hindlimb. Histological analysis of the limb implants demonstrated bone and skin ingrowth. INTERPRETATION: The developed animal model to study prosthetic gait and tissue integration with the implant demonstrated that porous titanium implants may permit bone and skin integration and prosthetic gait with a bone-anchored prosthesis. Future studies with this model will help optimize the implant and prosthesis properties.


Subject(s)
Artificial Limbs , Gait/physiology , Models, Animal , Osseointegration , Posture/physiology , Skin Physiological Phenomena , Animals , Cats , Hindlimb , Humans , Male , Prosthesis Implantation , Suture Anchors , Titanium
5.
J Rehabil Res Dev ; 46(3): 315-30, 2009.
Article in English | MEDLINE | ID: mdl-19675985

ABSTRACT

This article presents recent results in the development of the skin and bone integrated pylon (SBIP) intended for direct skeletal attachment of limb prostheses. In our previous studies of the porous SBIP-1 and SBIP-2 prototypes, the bond site between the porous pylons and residuum bone and skin did not show the inflammation characteristically observed when solid pylons are used. At the same time, porosity diminished the strength of the pylon. To find a reasonable balance between the biological conductivity and the strength of the porous pylon, we developed a mathematical model of the composite permeable structure. A novel manufacturing process was implemented, and the new SBIP-3 prototype was tested mechanically. The minimal strength requirements established earlier for the SBIP were exceeded threefold. The first histopathological analysis of skin, bone, and the implanted SBIP-2 pylons was conducted on two rats and one cat. The histopathological analysis provided new evidence of inflammation-free, deep ingrowth of skin and bone cells throughout the SBIP structure.


Subject(s)
Artificial Limbs , Models, Theoretical , Osseointegration , Skin Physiological Phenomena , Animals , Bone and Bones/pathology , Cats , Materials Testing , Prosthesis Design , Rats , Skin/pathology
6.
J Hand Surg Am ; 31(6): 973-8, 2006.
Article in English | MEDLINE | ID: mdl-16843158

ABSTRACT

PURPOSE: Osteoclasis, a minimally invasive technique to rotate the radius and ulna, is used commonly to correct forearm rotational deformities in children. The purpose of this investigation was to evaluate objectively osteotomy healing in patients treated with osteoclasis, with specific attention given to the risk for nonunion. METHODS: We identified 69 extremities in 65 children treated with osteoclasis and performed retrospective chart and radiographic reviews to evaluate the time to union of the radius and ulna and factors influencing healing. RESULTS: The average rotational correction was 90 degrees. Twenty-one ulnas had either delayed union or nonunion. Forty-eight of the forearms healed in less than 3 months. Factors correlated with a significantly decreased union rate included increased patient age, percutaneous technique, osteoclasis site in the proximal ulna, and primary diagnoses other than congenital radioulnar synostosis. Preoperative forearm position, magnitude of position correction, and treatment of the periosteum were not associated with changes in union rates. CONCLUSIONS: Forearm osteoclasis has a delayed union rate of 16%. Timely union of the ulna appears to be influenced by both patient-centered factors and surgical technique. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic, Level IV.


Subject(s)
Bone Diseases, Developmental/surgery , Forearm/abnormalities , Fractures, Ununited/diagnostic imaging , Minimally Invasive Surgical Procedures , Osteotomy/methods , Postoperative Complications/diagnostic imaging , Radius/abnormalities , Ulna/abnormalities , Wound Healing/physiology , Adolescent , Adult , Bone Diseases, Developmental/diagnostic imaging , Child , Child, Preschool , Female , Follow-Up Studies , Forearm/diagnostic imaging , Forearm/surgery , Humans , Male , Radiography , Radius/diagnostic imaging , Radius/surgery , Rotation , Synostosis/diagnostic imaging , Synostosis/surgery , Ulna/diagnostic imaging , Ulna/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...