Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 18(4): 632-44, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21052096

ABSTRACT

We have previously shown that a non-toxic noscapinoid, EM011 binds tubulin without altering its monomer/polymer ratio. EM011 is more active than the parent molecule, noscapine, in inducing G2/M arrest, inhibiting cellular proliferation and tumor growth in various human xenograft models. However, the mechanisms of mitotic-block and subsequent cell death have remained elusive. Here, we show that EM011-induced attenuation of microtubule dynamics was associated with impaired association of microtubule plus-end tracking proteins, such as EB1 and CLIP-170. EM011 treatment then led to the formation of multipolar spindles containing 'real' centrioles indicating drug-induced centrosome amplification and persistent centrosome declustering. Centrosome amplification was accompanied by an upregulation of Aurora A and Plk4 protein levels, as well as a surge in the kinase activity of Aurora A, suggesting a deregulation of the centrosome duplication cycle. Cell-cycle phase-specific experiments showed that the 'cytotoxicity-window' of the drug encompasses the late S-G2 period. Drug-treatment, excluding S-phase, not only resulted in lower sub-G1 population but also attenuated centrosome amplification and spindle multipolarity, suggesting that drug-induced centrosome amplification is essential for maximal cell death. Subsequent to a robust mitotic arrest, EM011-treated cells displayed diverse cellular fates suggesting a high degree of intraline variation. Some 'apoptosis-evasive' cells underwent aberrant cytokinesis to generate rampant aneuploidy that perhaps contributed to drug-induced cell death. These data indicate that spindle multipolarity induction by means of centrosome amplification has an exciting chemotherapeutic potential that merits further investigation.


Subject(s)
Apoptosis , Centrosome/physiology , Dioxoles/pharmacology , Isoquinolines/pharmacology , Microtubules/metabolism , Spindle Apparatus/physiology , Tubulin Modulators/pharmacology , Aurora Kinases , Cell Line, Tumor , G1 Phase , G2 Phase , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Mitosis , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase , Up-Regulation
2.
Oncogene ; 29(13): 1929-40, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20062083

ABSTRACT

The p53 tumor suppressor inhibits the proliferation of cells that undergo prolonged activation of the mitotic checkpoint. However, the function of this antiproliferative response is not well defined. Here, we report that p53 suppresses structural chromosome instability after mitotic arrest in human cells. In both HCT116 colon cancer cells and normal human fibroblasts, DNA breaks occurred during mitotic arrest in a p53-independent manner, but p53 was required to suppress the proliferation and structural chromosome instability of the resulting polyploid cells. In contrast, cells made polyploid without mitotic arrest exhibited neither significant structural chromosome instability nor p53-dependent cell cycle arrest. We also observed that p53 suppressed both the frequency and structural chromosome instability of spontaneous polyploids in HCT116 cells. Furthermore, time-lapse videomicroscopy revealed that polyploidization of p53(-/-) HCT116 cells is frequently accompanied by mitotic arrest. These data suggest that a function of the p53-dependent postmitotic response is the prevention of structural chromosome instability after prolonged activation of the mitotic checkpoint. Accordingly, our study suggests a novel mechanism of tumor suppression for p53, as well as a potential function for p53 in the outcome of antimitotic chemotherapy.


Subject(s)
Cell Cycle/physiology , Chromosomal Instability/genetics , Colonic Neoplasms/pathology , Mitosis , Polyploidy , Tumor Suppressor Protein p53/physiology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Survival , Colonic Neoplasms/genetics , HCT116 Cells/pathology , Humans , Mitosis/physiology , Neoplasm Proteins/metabolism , Neoplasm Proteins/pharmacology , Tumor Suppressor Protein p53/genetics
3.
Oncogene ; 28(9): 1197-205, 2009 Mar 05.
Article in English | MEDLINE | ID: mdl-19137014

ABSTRACT

Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with tumor suppressive activity in colorectal cancer. Here, we investigated whether KLF4 is involved in maintaining genetic stability in mouse embryonic fibroblasts (MEFs) isolated from mice wild type (+/+), heterozygous (+/-), or homozygous (-/-) for the Klf4 alleles. Compared to Klf4(+/+) and Klf4(+/-) MEFs, Klf4(-/-) MEFs had both a higher level of apoptosis and rate of proliferation. Quantification of chromosome numbers showed that Klf4(-/-) MEFs were aneuploid. A higher number of Klf4(-/-) MEFs exhibited gamma-H2AX foci and had higher amounts of gamma-H2AX compared to controls. Cytogenetic analysis demonstrated the presence of numerous chromosome aberrations including dicentric chromosomes, chromatid breaks, and double minute chromosomes in Klf4(-/-) cells but in few, if any, Klf4(+/+) or Klf4(+/-) MEFs. Approximately 25% of Klf4(-/-) MEFs exhibited centrosome amplification in contrast to the less than 5% of Klf4(+/+) or Klf4(+/-) MEFs. Finally, only Klf4(-/-) MEFs were capable of anchorage-independent growth. Taken together, these findings demonstrate that MEFs null for the Klf4 alleles are genetically unstable, as evidenced by the presence of aneuploidy, chromosome aberration and centrosome amplification. The results support a crucial role for KLF4 in maintaining genetic stability and as a tumor suppressor.


Subject(s)
Kruppel-Like Transcription Factors/genetics , Aneuploidy , Animals , Cell Division , Centrosome , Chromosome Aberrations , DNA Damage , Heterozygote , Homozygote , Kruppel-Like Factor 4 , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...