Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(8): 084311, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895189

ABSTRACT

At room temperature, cobalt oxide cations directly convert methane to methanol with high selectivity but very low efficiency. Two potential intermediates of this reaction, the [HO-Co-CH(3)](+) insertion intermediate and [H(2)O-Co=CH(2)](+) aquo-carbene complex are produced in a laser ablation source and characterized by electronic and vibrational spectroscopy. Reaction of laser-ablated cobalt cations with different organic precursors seeded in a carrier gas produces the intermediates, which subsequently expand into vacuum and cool. Ions are extracted into a time-of-flight mass spectrometer and spectra are measured via photofragment spectroscopy. Photodissociation of [HO-Co-CH(3)](+) in the visible and via infrared multiple photon dissociation (IRMPD) makes only Co(+) + CH(3)OH, while photodissociation of [H(2)O-Co=CH(2)](+) produces CoCH(2)(+) + H(2)O. The electronic spectrum of [HO-Co-CH(3)](+) shows progressions in the excited state Co-C stretch (335 cm(-1)) and O-Co-C bend (90 cm(-1)); the IRMPD spectrum gives ν(OH) = 3630 cm(-1). The [HO-Co-CH(3)](+)(Ar) complex has been synthesized and its vibrational spectrum measured in the O-H stretching region. The resulting spectrum is sharper than that obtained via IRMPD and gives ν(OH) = 3642 cm(-1). Also, an improved potential energy surface for the reaction of CoO(+) with methane has been developed using single point energies calculated by the CBS-QB3 method for reactants, intermediates, transition states and products.

SELECTION OF CITATIONS
SEARCH DETAIL
...