Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
RSC Adv ; 11(47): 29543-29554, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479532

ABSTRACT

Two calix[4]arene systems, C234+ and C244+ - where 2 corresponds to the number of viologen units and 3-4 corresponds to the number of carbon atoms connecting the viologen units to the macrocyclic core - have been synthesized and led to the formation of [3]pseudorotaxanes when combined with either CB[7] or CB[8]. The [3]pseudorotaxanes spontaneously dissociate upon reduction of the bipyridinium units as the result of intramolecular dimerization of the two face-to-face viologen radical cations. CB[7] and CB[8]-based [2]pseudorotaxanes containing monomeric viologen guest model compounds, MC32+ and MC4+, do not undergo decomplexation and dimerization following electrochemical reduction of their bipyridinium units.

2.
Langmuir ; 32(28): 7144-50, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27323835

ABSTRACT

Sulfonated surface patches of poly(styrene)-based colloidal particles (CPs) were functionalized with cucurbit[7]uril (CB[7]). The macrocycles served as recognition units for diphenyl viologen (DPV(2+)), a rigid bridging ligand. The addition of DPV(2+) to aqueous suspensions of the particles triggered the self-assembly of short linear and branched chainlike structures. The self-assembly mechanism is based on hydrophobic/ion-charge interactions that are established between DPV(2+) and surface-adsorbed CB[7]. DPV(2+) guides the self-assembly of the CPs by forming a ternary DPV(2+)⊂(CB[7])2 complex in which the two CB[7] macrocycles are attached to two different particles. Viologen-driven particle assembly was found to be both directional and reversible. Whereas sodium chloride triggers irreversible particle disassembly, the one-electron reduction of DPV(2+) with sodium dithionite causes disassembly that can be reversed via air oxidation. Thus, this bottom-up synthetic supramolecular approach allowed for the reversible formation and directional alignment of a 2D colloidal material.

3.
Chemistry ; 20(24): 7334-44, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24806551

ABSTRACT

Suppression of the dimerization of the viologen radical cation by cucurbit[7]uril (CB7) in water is a well-known phenomenon. Herein, two counter-examples are presented. Two viologen-containing thread molecules were designed, synthesized, and thoroughly characterized by (1)H DOSY NMR spectrometry, UV/Vis absorption spectrophotometry, square-wave voltammetry, and chronocoulometry: BV(4+), which contains two viologen subunits, and HV(12+), which contains six. In both threads, the viologen subunits are covalently bonded to a hexavalent phosphazene core. The corresponding [3]- and [7]pseudorotaxanes that form on complexation with CB7, that is, BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6, were also analyzed. The properties of two monomeric control threads, namely, methyl viologen (MV(2+)) and benzyl methyl viologen (BMV(2+)), as well as their [2]pseudorotaxane complexes with CB7 (MV(2+)⊂CB7 and BMV(2+)⊂CB7) were also investigated. As expected, the control pseudorotaxanes remained intact after one-electron reduction of their viologen-recognition stations. In contrast, analogous reduction of BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6 led to host-guest decomplexation and release of the free threads BV(2(·+)) and HV(6(·+)), respectively. (1)H DOSY NMR spectrometric and chronocoulometric measurements showed that BV(2(·+)) and HV(6(·+)) have larger diffusion coefficients than the corresponding [3]- and [7]pseudorotaxanes, and UV/Vis absorption studies provided evidence for intramolecular radical-cation dimerization. These results demonstrate that radical-cation dimerization, a relatively weak interaction, can be used as a driving force in novel molecular switches.


Subject(s)
Rotaxanes/chemical synthesis , Cations , Dimerization , Models, Molecular , Molecular Structure , Rotaxanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...