Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 118(48): 13981-91, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25390642

ABSTRACT

The design of fuel cells and lithium ion batteries is constrained, in part, by mechanical creep and perforation of the polymer electrolyte, a process that is poorly understood at the molecular level. The mechanical stiffness (quantified as shear viscosity) and structure of a widely used polymer electrolyte, Nafion, are studied in the limit of a low solvent volume fraction (≤26% v/v H2O) using molecular dynamics simulations. The viscosity is shown to increase by up to 4 orders of magnitude in response to changes in composition representing as little as 2 wt % of system. Two types of compositional changes are considered, changes in solvent volume fraction and counterion type. A system with a counterion X(v+) for every v Nafion monomers and y water molecules is denoted as (RSO3)vX·(H2O)y. The following trend is observed in viscosity: (RSO3)2Ca > RSO3Na > RSO3H·(H2O)3 > RSO3H ≈ RSO3H·(H2O)10. This trend correlates with changes in the strength of the SO3(-)/X(v+)/SO3(-) cross-links and the size of the cross-link networks. Counterion type is shown to strongly influence the morphology. The simulations are able to reproduce some important experimental trends without crystalline domains or high-MW effects like entanglements, providing a simplified understanding of the mechanical properties of Nafion.

2.
J Phys Chem B ; 118(29): 8798-807, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24971638

ABSTRACT

Permeation of water across the membrane/vapor and membrane/liquid-water interfaces of Nafion is studied using nonequilibrium molecular dynamics (NEMD) simulations, providing direct calculations of mass-transfer resistance. Water mass transfer within one nanometer of the vapor interface is shown to be 2 orders of magnitude slower than at any other point within the membrane, in qualitative agreement with permeation experiments. This interfacial resistance is much stronger than the resistance suggested by prior simulation work calculating self-diffusivity near the interface. The key difference between the prior approach and the NEMD approach is that the NEMD approach implicitly incorporates changes in solubility in the direction normal to the interface. Water is shown to be very insoluble near the vapor interface, which is rich in hydrophobic perfluorocarbon chains, in agreement with advancing contact angle experiments. Hydrophilic side chains are buried beneath this hydrophobic layer and aligned toward the interior of the membrane. Hydrophilic pores are not exposed to the vapor interface as proposed in prior theoretical work. At the membrane/liquid-water interface, highly swollen polymer chains extend into the liquid-water phase, forming a nanoscopically rough interface that is consistent with atomic force microscopy experiments. In these swollen conformations, hydrophilic side chains are exposed to the liquid-water phase, suggesting that the interface is hydrophilic, in agreement with receding contact angle experiments. The mass-transfer resistance of this interface is negligible compared to that of the bulk, in qualitative agreement with permeation experiments. The water activity at the vapor and liquid-water interfaces are nearly the same, yet large conformational and transport differences are observed, consistent with a mass-transfer-based understanding of Schroeder's paradox for Nafion.


Subject(s)
Fluorocarbon Polymers/chemistry , Membranes, Artificial , Molecular Dynamics Simulation , Water/chemistry , Molecular Conformation , Permeability , Volatilization
3.
J Phys Chem B ; 117(41): 12649-60, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24053430

ABSTRACT

Atomistic molecular dynamics simulations are reported over a wide range of water contents and temperatures to obtain a better understanding of the structural and transport aspects of water sorption in Nafion, a perfluorosulfonic acid membrane, under equilibrium conditions. For the short Nafion chains studied, good agreement is found between the water sorption isotherms from simulations and experiments at intermediate hydration (2 ≲ λ ≲ 7, where λ is the number of water molecules per sulfonate group), suggesting that, in that range, the isotherm is insensitive to effects of polymer chain relaxation. If polymer chain relaxation were important for water sorption at these conditions, then the water uptake of experimental membranes, which contain very long chains, might be far from equilibrium, making it difficult to obtain agreement with equilibrated, short-chain simulations. At λ ≲ 7, strong water-sulfonate interactions, rather than chain relaxation, may control water sorption, despite the fact that chain relaxation time increases dramatically with decreasing hydration. Evidence for strong water-sulfonate interactions is found in the observation that sulfonate groups share water molecules in their first coordination shells at λ ≲ 7. Strong water-sulfonate interactions are also observed to influence transport properties like water diffusivity, and are as important for understanding these transport properties as larger-scale phenomena like morphology and percolation transitions. Finally, at low humidity (λ ≈ 1-2), rod-like hydrophilic clusters are observed, as well as a mechanism of water diffusion that differs qualitatively from that of water at high hydration (λ ≳ 7) and in the bulk, pure-component phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...