Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1218(29): 4755-63, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21652041

ABSTRACT

Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique.


Subject(s)
Chromatography, Reverse-Phase/methods , Coal Tar/chemistry , Gas Chromatography-Mass Spectrometry/methods , Coal Tar/standards , Extraction and Processing Industry , Polycyclic Aromatic Hydrocarbons/analysis , Principal Component Analysis
2.
Environ Sci Technol ; 44(7): 2654-60, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20201516

ABSTRACT

A fed state in vitro methodology capable of use in commercial testing laboratories has been developed for measuring the human ingestion bioaccessibility of polyaromatic hydrocarbons (PAHs) in soil (Fed ORganic Estimation human Simulation Test- FOREhST). The protocol for measuring PAHs in the simulated gastro-intestinal fluids used methanolic KOH saponification followed by a combination of polymeric sorbent solid phase extraction and silica sorbent cartridges for sample cleanup and preconcentration. The analysis was carried out using high pressure liquid chromatography with fluorescence detection. The repeatability of the method, assessed by the measurement of the bioaccessibility of 6 PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[ah]anthracene, and indeno[1,2,3-c,d]pyrene) in eleven gas works soils, was approximately 10% RSD. The method compared well with the results from an independent dynamic human simulation reactor comprising of the stomach, duodenal and colon compartments tested on the same soils. The measured bioaccessible fraction of the soils varied from 10-60% for soils containing 10-300 mg kg(-1) PAH (the sum of the six studied) with total organic carbon concentrations in the soils ranging from 1-13%. A multiple regression model showed that the PAH bioaccessible fraction could be explained using the PAH compound, the soil type and the total PAH to soil organic carbon content. The method described here has potential for site specific detailed quantitative risk assessment either to modify the risk estimation or to contribute to the risk evaluation.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Soil/analysis , Biological Availability , Humans , Linear Models , Models, Biological
3.
Environ Int ; 35(2): 248-52, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18657318

ABSTRACT

Coal tars have been identified as posing a threat to human health due to their toxic, mutagenic and carcinogenic characteristics. Workers involved in former gasholders decommissioning are potentially exposed to relevant concentrations of volatile and semi-volatile hydrocarbons upon opening up derelict tanks and during tar excavation/removal. While information on contaminated sites air-quality and its implications on medium-long term exposure is available, acute exposure issues associated with the execution of critical tasks are less understood. Calculations indicated that the concentration of a given contaminant in the gasholder vapour phase only depends on the coal tar composition, being only barely affected by the presence of water in the gasholder and the tar volume/void space ratio. Fugacity modelling suggested that risk-critical compounds such as benzene, naphthalene and other monocyclic and polycyclic aromatic hydrocarbons may gather in the gasholder air phase at significant concentrations. Gasholder emissions were measured on-site and compared with the workplace exposure limits (WELs) currently in use in UK. While levels for most of the toxic compounds were far lower than WELs, benzene air-concentrations where found to be above the accepted threshold. In addition due to the long exposure periods involved in gasholder decommissioning and the significant contribution given by naphthalene to the total coal tar vapour concentration, the adoption of a WEL for naphthalene may need to be considered to support operators in preventing human health risk at the workplace. The Level I fugacity approach used in this study demonstrated its suitability for applications to sealed environments such as gasholders and its further refining could provide a useful tool for land remediation risk assessors.


Subject(s)
Air/analysis , Coal Tar/analysis , Hydrocarbons/analysis , Inhalation Exposure , Occupational Exposure , Petroleum/analysis , Air Pollutants, Occupational , Coal Tar/toxicity , Humans , Hydrocarbons/toxicity , Petroleum/toxicity , United Kingdom , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...