Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(7): 2998-3009, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38265072

ABSTRACT

Understanding factors that influence the volatility of lanthanide complexes remains an important goal for applications such as gas-phase f-metal separations and the synthesis of lanthanide-containing thin films. Lanthanide complexes often exhibit volatility differences that depend on the ability of ligands to saturate the lanthanide coordination sphere and attenuate intermolecular bonding in the solid state. This can make it difficult to assess how electronic factors associated with differing ligand substituents influence volatility. Here we describe the synthesis, structures, and thermal properties of a series of volatile lanthanide complexes (Ln = Nd, Er, and Yb) containing N4O3 ligands decorated with different alkyl and fluoroalkyl substituents (CF3, CF2CF2CF3, Me, and tBu). These ligands completely enveloped the tested lanthanides to form monomeric complexes with 7-coordinate distorted capped octahedral coordination geometries, as determined using single-crystal X-ray diffraction. Thermogravimetric analysis and bulk sublimation studies show how metal encapsulation affords complexes with the same volatility regardless of metal size, even with lanthanide ions with significantly different radii such as Nd3+ and Yb3+. Most notably, the results show that increasing ligand fluorination, a strategy often used to increase the volatility of metal complexes, is not always beneficial and can significantly attenuate the volatility of lanthanide complexes depending on location with respect to other substituents in the ligand framework. A pair-wise model based on density functional theory shows that the net intermolecular interactions in the unit cell can still be stronger when fluorination is present. In other words, even if individual interactions between neighboring molecules are weaker, the total number of interactions in the solid arising from the nature of crystal packing is equally important to consider.

2.
Inorg Chem ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011639

ABSTRACT

Here, we report the mechanochemical synthesis and characterization of homoleptic uranium and lanthanide phosphinodiboranates with isopropyl and ethyl substituents attached to phosphorus. M(H3BPiPr2BH3)3 complexes with M = U, Nd, Sm, Tb, and Er were prepared by ball milling UI3(THF)4, SmBr3, or MI3 with three equivalents of K(H3BPiPr2BH3). M(H3BPEt2BH3)3 with M = U and Nd were prepared similarly using K(H3BPEt2BH3), and the complexes were purified by extraction and crystallization from Et2O or CH2Cl2. Single-crystal XRD studies revealed that all five M(H3BPiPr2BH3)3 crystallize as dimers, despite the significant differences in metal radii across the series. In contrast, Nd(H3BPEt2BH3)3 with smaller ethyl substituents crystallized as a coordination polymer. Crystals of U(H3BPEt2BH3)3 were not suitable for structural analysis, but crystals of U(H3BPMe2BH3)3 isolated in low yield by solution methods were isostructural with Nd(H3BPEt2BH3)3. 1H and 11B NMR studies in C6D6 revealed that all of the complexes form mixtures of monomer and oligomers when dissolved, and the extent of oligomerization was highly dependent on metal radius and phosphorus substituent size. A comprehensive analysis of all structurally characterized uranium and lanthanide phosphinodiboranate complexes reported to date, including those with larger Ph and tBu substituents, revealed that the degree of oligomerization in solution can be correlated to differences in B-P-B angles obtained from single-crystal XRD studies. Density functional theory calculations, which included structural optimizations in combination with conformational searches using tight binding methods, replicated the general experimental trends and revealed free energy differences that account for the different solution and solid-state structures. Collectively, these results reveal how steric changes to phosphorus substituents significantly removed from metal coordination sites can have a significant influence on solution speciation, deoligomerization energies, and the solid-state structure of homoleptic phosphinodiboranate complexes containing trivalent f-metals.

3.
Explor Res Clin Soc Pharm ; 12: 100351, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965249

ABSTRACT

Background: Diabetes is common among Aboriginal and/or Torres Strait Islander peoples, yet often undetected in hospital. Objective: To identify how urban hospital pharmacists can detect if Aboriginal and/or Torres Strait Islander patients have diabetes or a higher chance of getting diabetes. Methods: A multi-methods study used data from patients, and researcher field notes. Aboriginal and/or Torres Strait Islander peoples admitted to hospital over 12-weeks (July-October 2021) were prospectively identified from admissions lists. A hospital pharmacist-researcher visited eligible patients. Consenting participants had their blood glucose and HbA1c checked. Participants with HbA1c > 6.5% (no known diabetes) or 7% (known diabetes) were referred for endocrinology review during their stay. Test results and resultant diabetes plan were shared with their general practitioner. Two days after discharge, participants were called to gauge views on their hospital-based diabetes care. Barcode technology recorded pharmacist time. Voice-recorded field notes were thematically analysed. Ethics approval was obtained. Results: Seventy-two patients were eligible for inclusion, 67/72 (93%) consented to take part. Sixty-one (91%) patients returned a HbA1c < 6.5, of which, 4/61 (6.5%) returned a HbA1c, 6-6.4. They were contacted to yarn about diabetes prevention. Six of the 67 (9%) qualified for endocrine review, 5 had known diabetes, one newly diagnosed. None were known to endocrinology. All participants telephoned were satisfied with their hospital-based diabetes care. Pharmacist time for initial introductory yarn, consenting process, organisation of HbA1c and results discussion was 20 min or 40 min if referred for endocrine review. Field notes guided understanding of service implementation. Conclusion: This novel pharmacist-led diabetes screening service for Aboriginal and/or Torres Strait Islander peoples appeared to provide a unique opportunity for screening and referral links in a holistic way. Future research is required to test this model by upscaling to include more pharmacists and other chronic disease screening and referral pathways.

4.
PLoS One ; 18(9): e0291747, 2023.
Article in English | MEDLINE | ID: mdl-37725625

ABSTRACT

While the COVID-19 pandemic has had a detrimental impact on many businesses worldwide, essential businesses, such as grocery stores, continued to operate despite potential disease transmission. Although the principal mode by which people are infected with SARS-CoV-2, the virus that causes COVID-19, is through exposure to respiratory droplets and very small particles carrying infectious virus, contaminated surfaces might play a role in transmission. We collected swab samples from frequently touched surfaces, including grocery carts, touchscreen monitors, credit card keypads, pharmacy counters, self-service food utensils, and refrigerator and freezer handles, in two metro-Atlanta grocery stores over the course of two sampling events in March 2021. Of the 260 swab samples collected, 6 (2.3%) samples were positive for SARS-CoV-2 RNA by reverse transcriptase quantitative polymerase chain reaction. Positive samples were collected from pharmacy (12.0% [3/25] samples), refrigerator/freezer aisles (2.5% [1/39] samples), and self-service food court (5.0% [2/40] samples) areas. Table/counter edge and underside surfaces represented 33% (2/6) of positive samples. These data suggest that risk of exposure to SARS-CoV-2 from frequently touched surfaces in grocery store settings is likely low; however, more frequent cleaning of surfaces in pharmacy and self-service food courts might be warranted.


Subject(s)
COVID-19 , Gastropoda , Humans , Animals , SARS-CoV-2 , Supermarkets , Pandemics , RNA, Viral/genetics
5.
Inorg Chem ; 61(46): 18412-18423, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36331423

ABSTRACT

We describe the syntheses of a series of sodium aminodiboranate salts, Na(H3B-NR2-BH3), with different substituents on nitrogen, including sodium salts of the unsubstituted aminodiboranate, H3B-NH2-BH3-, and of the N-substituted anions H3B-NRR'-BH3-, where NRR' = NHMe, NHEt, NH(SiMe3), NEt2, N(i-Pr)2, N(SiMe3)2, NMe(i-Pr), NMe(t-Bu), NMe(SiMe3), and the pyrrolidide and piperidide derivatives NC4H8, NC5H10, and NC5H8-cis-2,6-Me2. The compounds have been characterized by 1H and 11B NMR spectroscopy and IR spectroscopy; crystallographic studies have been carried out for the unsolvated N,N-dimethylaminodiboranate salt Na(H3B-NMe2-BH3) and several sodium aminodiboranate salts in which the sodium ions are solvated with ethers (dioxane, diglyme, tetrahydrofuran, and 12-crown-4) or amines (N,N,N',N'-tetramethylethylenediamine). One of the structures contains a rare example of an ether ligand in which one oxygen atom bridges between two metal ions. General structural and spectroscopic trends as a function of the substituents on nitrogen are discussed.

6.
Angew Chem Int Ed Engl ; 61(45): e202211145, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36097137

ABSTRACT

Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal-ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+ and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalent f-metals that show how shorter-than-expected U-B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal-ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.

7.
Dalton Trans ; 51(34): 12895-12903, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35942906

ABSTRACT

The high fluorophilicity of borane-containing ligands offers promise for accessing new metallodrug candidates capable of bifunctional [18F]-positron emission tomography (PET) imaging, but this requires water soluble and hydrolytically stable ligands that can be fluorinated under mild conditions. Toward this goal, here we report the synthesis and characterization of water-soluble Pt(II) complexes containing a triaminoborane-bridged diphosphoramidite ligand called MeOTBDPhos that can be fluorinated using simple fluoride salts. NMR and XRD studies show that (MeOTBDPhos)PtCl2 (1) dissolves in water with cooperative H-OH addition across the bridgehead N-B bond to form 1-H2O. The B-OH bond in 1-H2O undergoes rapid displacement with fluoride (<10 min) when treated with CsF in MeCN to form 1-HF. 1-HF can also be prepared in <10 min by addition of KF to 1 in the presence Kryptofix® 222 and (HNEt3)Cl in MeCN. In addition to using fluoride salts, we show how mononuclear 1 can be fluorinated with HBF4·Et2O to form dinuclear [(MeOTBDPhos-HF)Pt(µ-Cl)]2(BF4)2 (4-HF). Comparative studies show that the B-F bond in 1-HF undergoes hydrolysis as soon as it is dissolved in water or saline, but the B-F bond persists for hours when the pH of the solution is lowered to pH ≤ 2. In contrast to 1-HF, the B-F bond in dinuclear 4-HF persists for days when dissolved in water, which may be attributed to slow, sacrificial release of fluoride from the BF4- anion. The results show how cooperative N-B reactivity on the ligand can be leveraged to rapidly fluorinate water-soluble MeOTBDPhos complexes under mild conditions and afford suggestions for how to enhance hydrolytic B-F stability, as required for use in biomedical applications.


Subject(s)
Boranes , Platinum , Fluorides , Halogenation , Hydrolysis , Ligands , Salts , Water
8.
Chemistry ; 28(65): e202201791, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-35997655

ABSTRACT

Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal-catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non-innocent) ligands, there are few examples of metal complexes that leverage ligand-centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane-derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium-catalyzed cycloaddition reactions at the ligand, and Pd-catalyzed Stille and Suzuki cross-coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.

9.
Inorg Chem ; 61(19): 7217-7221, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35510902

ABSTRACT

Here we show that the praseodymium N,N-dimethylaminodiboranate complex Pr(H3BNMe2BH3)3 and the 2,2,6,6-tetramethylheptane-3,5-dionate complex Pr(thd)3 can serve as volatile carriers for 225Ac. The actinium coordination complexes Ac(H3BNMe2BH3)3 and Ac(thd)3 are the likely species subliming with the carrier material. A sample of 225Ac-doped Pr(H3BNMe2BH3)3 was used to deposit amorphous 225Ac-doped praseodymium boride films on glass and Si(100) at 300 °C. The α emission spectra of the refractory films are well-resolved, suggesting that they could be used as radioactive implants for brachytherapy and related treatments.


Subject(s)
Brachytherapy , Praseodymium , Actinium , Boron Compounds
11.
Inorg Chem ; 61(5): 2391-2401, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35073063

ABSTRACT

Metal-ligand cooperativity (MLC), a phenomenon that leverages reactive ligands to promote synergistic reactions with metals, has proven to be a powerful approach to achieving new and unprecedented chemical transformations with metal complexes. While many examples of MLC are known with a wide range of substrates, experimentally quantifying how ligand modifications affect MLC binding strength remains a challenge. Here we describe how cyclic voltammetry (CV) was used to quantify differences in MLC binding strength in a series of square-pyramidal Ru complexes. This method relies on using multifunctional ligands (those capable of both MLC and ligand-centered redox activity) as electrochemical reporters of MLC binding strength. The synthesis and characterization of Ru complexes with three different redox-active tetradentate ligands and two different ancillary phosphines (PPh3 and PCy3) are described. Titration CV studies conducted using BH3·THF with BH3 as a model MLC substrate allowed ΔGMLC to be quantified for each complex. Compared to our base triaryl ligand, increasing π conjugation in the backbone of the redox-active ligand enhanced MLC binding, whereas increasing π conjugation in the flanking groups decreased the MLC binding strength. Structures and spectroscopic data collected for the isolated MLC complexes are also described along with supporting DFT calculations that were used to illuminate electronic factors that likely account for the observed differences in the MLC binding strength. These results demonstrate how redox-active ligands and CV can be used to quantify subtle differences in the MLC binding strength across a series of structurally related complexes with different ligand modifications.

12.
Dalton Trans ; 50(33): 11472-11484, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34346459

ABSTRACT

Phosphinodiboranates (H3BPR2BH3-) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H3BPtBu2BH3) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et2O and THF. Here we report how this reactivity appears to be further attenuated in solution when the tBu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H3BPPh2BH3). Grinding three equivalents of K(H3BPPh2BH3) with UI3(THF)4 or LnI3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H3BPPh2BH3)3 (1), Ce(H3BPPh2BH3)3 (2), Pr(H3BPPh2BH3)3 (3), and Nd(H3BPPh2BH3)3 (4) to be prepared and subsequently crystallized in good yields (50-80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1H and 11B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H3BPPh2BH3)3(THF)3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H3BPPh2BH3- ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H3BPPh2BH3), attempting the same mechanochemical reactions with Na(H3BPH2BH3) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H3BPH2BH3)I2(THF)3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods.

13.
Inorg Chem ; 60(11): 7593-7601, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33984231

ABSTRACT

Low-valent uranium coordination chemistry continues to rely heavily on access to trivalent starting materials, but these reagents are typically prepared from uranium turnings, which are becoming increasingly difficult to acquire. Here we report convenient syntheses of UI3(THF)4 (THF = tetrahydrofuran) and UBr3(THF)4 from UCl4, a more accessible uranium starting material that can be prepared from commercially available uranium oxides. UCl3(THF)2 (1), UBr3(THF)4 (2), and UI3(THF)4 (3) were prepared by single-pot reductions from UCl4 using KH and KC8 and converted to 2 or 3 by halide exchange with the corresponding Me3SiX (where X = Br or I). Reduction of UI4(Et2O)2 (4; Et2O = diethyl ether) and UI4(1,4-dioxane)2 (5) was also shown to cleanly yield 3. Complex 1 was also synthesized separately by the addition of anhydrous HCl to U(BH4)3(THF)2, which was prepared by thermal reduction of U(BH4)4. All three trivalent uranium halide complexes were isolated in high crystalline yields (typically 85-99%) and their formulations were confirmed by single-crystal X-ray diffraction, elemental analysis, and 1H NMR and IR spectroscopy. Elemental analysis conducted on triplicate samples of 1-3 exposed to vacuum for different time intervals revealed significant THF loss for all three complexes in as little as 15 min. Overall, these results offer expedient entry into low-valent uranium chemistry for researchers lacking access to uranium turnings.

14.
Chemistry ; 27(5): 1592-1597, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33064328

ABSTRACT

A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron-functionalized and hexavanadium polyoxovanadate-alkoxide clusters, which we characterized here using V K-edge X-ray absorption spectroscopy. Substantial changes in the pre-edge peak intensities were observed that tracked with the V 3d-electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIII cations were electronically isolated from the polyoxovanadate core.

15.
Chem Commun (Camb) ; 56(64): 9110-9113, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32648569

ABSTRACT

Here we report how reactions at a chemically reactive diphosphine shift the long-lived luminescent colour of a crystalline three-coordinate Cu(i) complex from green to blue. The results demonstrate how vapochromism and single-crystal-to-single-crystal transformations can be achieved using ligand-centered reactions.

16.
Inorg Chem ; 59(15): 10845-10853, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32639726

ABSTRACT

Metal-ligand cooperativity (MLC) relies on chemically reactive ligands to assist metals with small-molecule binding and activation, and it has facilitated unprecedented examples of catalysis with metal complexes. Despite growing interest in combining ligand-centered chemical and redox reactions for chemical transformations, there are few studies demonstrating how chemically engaging redox active ligands in MLC affects their electrochemical properties when bound to metals. Here we report stepwise changes in the redox activity of model Ru complexes as zero, one, and two BH3 molecules undergo MLC binding with a triaryl noninnocent N2S2 ligand derived from o-phenylenediamine (L1). A similar series of Ru complexes with a diaryl N2S2 ligand with ethylene substituted in place of phenylene (L2) is also described to evaluate the influence of the o-phenylenediamine subunit on redox activity and MLC. Cyclic voltammetry (CV) studies and density functional theory (DFT) calculations show that MLC attenuates ligand-centered redox activity in both series of complexes, but electron transfer is still achieved when only one of the two redox-active sites on the ligands is chemically engaged. The results demonstrate how incorporating more than one multifunctional reactive site could be an effective strategy for maintaining redox noninnocence in ligands that are also chemically reactive and competent for MLC.

17.
Inorg Chem ; 59(1): 48-61, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31469552

ABSTRACT

In this Forum Article, we review the development of chelating borohydride ligands called aminodiboranates (H3BNR2BH3-) and phosphinodiboranates (H3BPR2BH3-) for the synthesis of trivalent f-element complexes. The advantages and history of using mechanochemistry to prepare molecular borohydride complexes are described along with new results demonstrating the mechanochemical synthesis of M2(H3BPtBu2BH3)6, where M = U, Nd, Tb, Er, and Lu (1-5). Multinuclear NMR, IR, and single-crystal X-ray diffraction data are reported for 1-5 alongside complementary density functional theory calculations to reveal differences in their structure and reactivity with and without tetrahydrofuran. The results demonstrate how mechanochemistry can be used to access f-element complexes with chelating borohydrides in improved and reproducible yields, which is an important step toward investigating the properties of lanthanide and actinide phosphinodiboranate complexes with different phosphorus substituents. The relevance of these results is contextualized by a discussion of structural factors known to influence the volatility of f-element borohydrides and applications that require the development of volatile f-element complexes.

18.
Inorg Chem ; 58(19): 12756-12774, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31490065

ABSTRACT

The continued development of redox-active ligands requires an understanding as to how ligand modifications and related factors affect the locus of redox activity and spin density in metal complexes. Here we describe the synthesis, characterization, and electronic structure of nickel complexes containing triaryl NNNN (1) and SNNS (2) ligands derived from o-phenylenediamine. The tetradentate ligands in 1 and 2 were investigated and compared to those in metal complexes with compositionally similar ligands to determine how ligand-centered redox properties change when redox-active flanking groups are replaced with redox-innocent NMe2 or SMe. A derivative of 2 in which the phenylene backbone was replaced with ethylene (3) was also prepared to interrogate the importance of o-phenylenediamine for ligand-centered redox activity. Cyclic voltammograms collected for 1 and 2 revealed two fully reversible ligand-centered redox events. Remarkably, several quasi-reversible ligand-centered redox waves were also observed for 3 despite the absence of the o-phenylenediamine subunit. Oxidizing 1 and 2 with silver salts containing different counteranions (BF4-, OTf-, NTf2-) allowed the electrochemically generated complexes to be analyzed as a function of different oxidation states using single-crystal X-ray diffraction (XRD), EPR spectroscopy, and S K-edge X-ray absorption spectroscopy. The experimental data are corroborated by DFT calculations, and together, they reveal how the location of unpaired spin density and electronic structure in singly and doubly oxidized salts of 1 and 2 varies depending on the coordinating ability of the counteranions and exogenous ligands such as pyridine.

19.
Angew Chem Int Ed Engl ; 58(36): 12451-12455, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31271502

ABSTRACT

Bond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance. Cl K-edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M-Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K-edge data for Ti complexes with a wider range of Ti-Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal-ligand covalency using bond distances from readily-available crystallographic data.

20.
Angew Chem Int Ed Engl ; 58(34): 11695-11699, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31190446

ABSTRACT

We report the small-scale synthesis, isolated yield, single-crystal X-ray structure, 1 H NMR solution spectroscopy /solid-state UV/Vis-nIR spectroscopy, and density functional theory (DFT)/ab initio wave function theory calculations on an Am3+ organometallic complex, [Am(C5 Me4 H)3 ] (1). This constitutes the first quantitative data on Am-C bonding in a molecular species.

SELECTION OF CITATIONS
SEARCH DETAIL
...