Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am Nat ; 204(2): 181-190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008842

ABSTRACT

AbstractWhere dramatic sexual displays are involved in attracting a mate, individuals can enhance their performances by manipulating their physical environment. Typically, individuals alter their environment either in preparation for a performance by creating a "stage" or during the display itself by using discrete objects as "props." We examined an unusual case of performative manipulation of an entire stage by male Albert's lyrebirds (Menura alberti) during their complex song and dance displays. We found that males from throughout the species' range shake the entangled forest vegetation of their display platforms, creating a highly conspicuous and stereotypical movement external to their bodies. This "stage shaking" is performed in two different rhythms, with the second rhythm an isochronous beat that matches the beat of the coinciding vocalizations. Our results provide evidence that stage shaking is an integral, and thus likely functional, component of male Albert's lyrebird sexual displays and so highlight an intriguing but poorly understood facet of complex communication.


Subject(s)
Vocalization, Animal , Male , Animals , Sexual Behavior, Animal , Environment , Passeriformes/physiology , Animal Communication
2.
Proc Biol Sci ; 289(1970): 20212498, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35259987

ABSTRACT

Most studies of acoustic communication focus on short units of vocalization such as songs, yet these units are often hierarchically organized into higher-order sequences and, outside human language, little is known about the drivers of sequence structure. Here, we investigate the organization, transmission and function of vocal sequences sung by male Albert's lyrebirds (Menura alberti), a species renowned for vocal imitations of other species. We quantified the organization of mimetic units into sequences, and examined the extent to which these sequences are repeated within and between individuals and shared among populations. We found that individual males organized their mimetic units into stereotyped sequences. Sequence structures were shared within and to a lesser extent among populations, implying that sequences were socially transmitted. Across the entire species range, mimetic units were sung with immediate variety and a high acoustic contrast between consecutive units, suggesting that sequence structure is a means to enhance receiver perceptions of repertoire complexity. Our results provide evidence that higher-order sequences of vocalizations can be socially transmitted, and that the order of vocal units can be functionally significant. We conclude that, to fully understand vocal behaviours, we must study both the individual vocal units and their higher-order temporal organization.


Subject(s)
Acoustics , Vocalization, Animal , Animals , Humans , Male
3.
Biol Rev Camb Philos Soc ; 96(4): 1484-1503, 2021 08.
Article in English | MEDLINE | ID: mdl-33797176

ABSTRACT

Research on avian vocalisations has traditionally focused on male song produced by oscine passerines. However, accumulating evidence indicates that complex vocalisations can readily evolve outside the traditional contexts of mate attraction and territory defence by male birds, and yet the previous bias towards male song has shaped - and continues to shape - our understanding of avian communication as a whole. Accordingly, in this review we seek to address this imbalance by synthesising studies on female vocalisations from across signalling contexts throughout the Aves, and discuss the implications of recent empirical advances for our understanding of vocalisations in both sexes. This review reveals great structural and functional diversity among female vocalisations and highlights the important roles that vocalisations can play in mediating female-specific behaviours. However, fundamental gaps remain. While there are now several case studies that identify the function of female vocalisations, few quantify the associated fitness benefits. Additionally, very little is known about the role of vocal learning in the development of female vocalisations. Thus, there remains a pressing need to examine the function and development of all forms of vocalisations in female birds. In the light of what we now know about the functions and mechanisms of female vocalisations, we suggest that conventional male-biased definitions of songs and calls are inadequate for furthering our understanding of avian vocal communication more generally. Therefore, we propose two simple alternatives, both emancipated from the sex of the singer. The first distinguishes song from calls functionally as a sexually selected vocal signal, whilst the second distinguishes them mechanistically in terms of their underlying neurological processes. It is clear that more investigations are needed into the ultimate and proximate causes of female vocalisations; however, these are essential if we are to develop a holistic epistemology of avian vocal communication in both sexes, across ecological contexts and taxonomic divides.


Subject(s)
Reproduction , Vocalization, Animal , Animals , Communication , Female , Male
4.
Ecol Evol ; 11(6): 2701-2716, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767830

ABSTRACT

Geographic variation in bird song has received much attention in evolutionary studies, yet few consider components within songs that may be subject to different constraints and follow different evolutionary trajectories. Here, we quantify patterns of geographic variation in the socially transmitted "whistle" song of Albert's lyrebirds (Menura alberti), an oscine passerine renowned for its remarkable vocal abilities. Albert's lyrebirds are confined to narrow stretches of suitable habitat in Australia, allowing us to map likely paths of cultural transmission using a species distribution model and least cost paths. We use quantitative methods to divide the songs into three components present in all study populations: the introductory elements, the song body, and the final element. We compare geographic separation between populations with variation in these components as well as the full song. All populations were distinguishable by song, and songs varied according to the geographic distance between populations. However, within songs, only the introductory elements and song body could be used to distinguish among populations. The song body and final element changed with distance, but the introductory elements varied independently of geographic separation. These differing geographic patterns of within-song variation are unexpected, given that the whistle song components are always produced in the same sequence and may be perceived as a temporally discrete unit. Knowledge of such spatial patterns of within-song variation enables further work to determine possible selective pressures and constraints acting on each song component and provides spatially explicit targets for preserving cultural diversity. As such, our study highlights the importance for science and conservation of investigating spatial patterns within seemingly discrete behavioral traits at multiple levels of organization.

5.
Biol Rev Camb Philos Soc ; 96(4): 1135-1159, 2021 08.
Article in English | MEDLINE | ID: mdl-33652499

ABSTRACT

Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.


Subject(s)
Acoustics , Biological Evolution , Animals , Phenotype , Phylogeny , Reproducibility of Results
6.
Curr Biol ; 31(9): 1970-1976.e4, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33636120

ABSTRACT

Darwin argued that females' "taste for the beautiful" drives the evolution of male extravagance,1 but sexual selection theory also predicts that extravagant ornaments can arise from sexual conflict and deception.2,3 The sensory trap hypothesis posits that elaborate sexual signals can evolve via antagonistic coevolution whereby one sex uses deceptive mimicry to manipulate the opposite sex into mating.3 Here, the success of deceptive mimicry depends on whether it matches the receiver's percept of the model,4 and so has little in common with concepts of aesthetic judgement and 'beauty.'1,5-9 We report that during their song and dance displays,10 male superb lyrebirds (Menura novaehollandiae) create an elaborate acoustic illusion of a mixed-species mobbing flock. Acoustic analysis showed that males mimicked the mobbing alarm calls of multiple species calling together, enhancing the illusion by also vocally imitating the wingbeats of small birds. A playback experiment confirmed that this illusion was sufficient to fool avian receivers. Furthermore, males produced this mimicry only (1) when females attempted to exit male display arenas, and (2) during the lyrebirds' unusually long copulation, suggesting that the mimicry aims to prevent females from prematurely terminating these crucial sexual interactions. Such deceptive behavior by males should select for perceptual acuity in females, prompting an inter-sexual co-evolutionary arms race between male mimetic accuracy and discrimination by females. In this way the elaboration of the complex avian vocalizations we call 'song' could be driven by sexual conflict, rather than a female's preference for male extravagance.


Subject(s)
Bullying , Illusions , Acoustics , Animals , Birds , Copulation , Courtship , Female , Male , Sexual Behavior, Animal , Vocalization, Animal
7.
Ecol Lett ; 19(6): 609-19, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27117779

ABSTRACT

Mimicry is a canonical example of adaptive signal design. In principle, what constitutes mimicry is independent of the taxonomic identity of the mimic, the ecological context in which it operates, and the sensory modality through which it is expressed. However, in practice the study of mimicry is inconsistent across research fields, with theoretical and empirical advances often failing to cross taxonomic and sensory divides. We propose a novel conceptual framework whereby mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result confers a selective benefit onto the mimic. Here, misidentification and/or deception are no longer formal requirements, and mimicry can evolve irrespective of the underlying proximate mechanisms. The centrality of receiver perception in this framework enables us to formally distinguish mimicry from perceptual exploitation and integrate mimicry and multicomponent signalling theory for the first time. In addition, it resolves inconsistencies in our understanding of the role of learning in mimicry evolution, and shows that imperfect mimicry is expected to be the norm. Mimicry remains a key model for understanding signal evolution and cognition, and we recommend the adoption of a unified approach to stimulate future interdisciplinary developments in this fascinating area of research.


Subject(s)
Adaptation, Biological , Biological Evolution , Biological Mimicry , Models, Biological , Cues
8.
Biol Rev Camb Philos Soc ; 90(2): 643-68, 2015 May.
Article in English | MEDLINE | ID: mdl-25079896

ABSTRACT

Mimicry is a classical example of adaptive signal design. Here, we review the current state of research into vocal mimicry in birds. Avian vocal mimicry is a conspicuous and often spectacular form of animal communication, occurring in many distantly related species. However, the proximate and ultimate causes of vocal mimicry are poorly understood. In the first part of this review, we argue that progress has been impeded by conceptual confusion over what constitutes vocal mimicry. We propose a modified version of Vane-Wright's (1980) widely used definition of mimicry. According to our definition, a vocalisation is mimetic if the behaviour of the receiver changes after perceiving the acoustic resemblance between the mimic and the model, and the behavioural change confers a selective advantage on the mimic. Mimicry is therefore specifically a functional concept where the resemblance between heterospecific sounds is a target of selection. It is distinct from other forms of vocal resemblance including those that are the result of chance or common ancestry, and those that have emerged as a by-product of other processes such as ecological convergence and selection for large song-type repertoires. Thus, our definition provides a general and functionally coherent framework for determining what constitutes vocal mimicry, and takes account of the diversity of vocalisations that incorporate heterospecific sounds. In the second part we assess and revise hypotheses for the evolution of avian vocal mimicry in the light of our new definition. Most of the current evidence is anecdotal, but the diverse contexts and acoustic structures of putative vocal mimicry suggest that mimicry has multiple functions across and within species. There is strong experimental evidence that vocal mimicry can be deceptive, and can facilitate parasitic interactions. There is also increasing support for the use of vocal mimicry in predator defence, although the mechanisms are unclear. Less progress has been made in explaining why many birds incorporate heterospecific sounds into their sexual displays, and in determining whether these vocalisations are functionally mimetic or by-products of sexual selection for other traits such as repertoire size. Overall, this discussion reveals a more central role for vocal mimicry in the behavioural ecology of birds than has previously been appreciated. The final part of this review identifies important areas for future research. Detailed empirical data are needed on individual species, including on the structure of mimetic signals, the contexts in which mimicry is produced, how mimicry is acquired, and the ecological relationships between mimic, model and receiver. At present, there is little information and no consensus about the various costs of vocal mimicry for the protagonists in the mimicry complex. The diversity and complexity of vocal mimicry in birds raises important questions for the study of animal communication and challenges our view of the nature of mimicry itself. Therefore, a better understanding of avian vocal mimicry is essential if we are to account fully for the diversity of animal signals.


Subject(s)
Birds/physiology , Vocalization, Animal , Animals , Biological Evolution , Learning , Species Specificity
9.
Curr Biol ; 23(12): 1132-5, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23746637

ABSTRACT

All human cultures have music and dance, and the two activities are so closely integrated that many languages use just one word to describe both. Recent research points to a deep cognitive connection between music and dance-like movements in humans, fueling speculation that music and dance have coevolved and prompting the need for studies of audiovisual displays in other animals. However, little is known about how nonhuman animals integrate acoustic and movement display components. One striking property of human displays is that performers coordinate dance with music by matching types of dance movements with types of music, as when dancers waltz to waltz music. Here, we show that a bird also temporally coordinates a repertoire of song types with a repertoire of dance-like movements. During displays, male superb lyrebirds (Menura novaehollandiae) sing four different song types, matching each with a unique set of movements and delivering song and dance types in a predictable sequence. Crucially, display movements are both unnecessary for the production of sound and voluntary, because males sometimes sing without dancing. Thus, the coordination of independently produced repertoires of acoustic and movement signals is not a uniquely human trait.


Subject(s)
Auditory Perception/physiology , Birds/physiology , Dancing , Locomotion , Motor Activity/physiology , Music , Singing , Acoustic Stimulation , Animals , Cognition , Humans , Male , Pattern Recognition, Physiological
10.
Behav Ecol ; 18: 849-859, 2007.
Article in English | MEDLINE | ID: mdl-18392112

ABSTRACT

Interpreting receiver responses to on-territory playback of aggressive signals is problematic. One solution is to combine such receiver-perspective experiments with a sender-perspective experiment that allows subjects to demonstrate how their choice of singing strategies is associated with their approach behavior. Here we report the results of a sender-perspective study on the banded wren (Thryothorus pleurostictus), and combine information on context and results of previous receiver-perspective experiments to clarify function. Territorial males were presented with a 5-min playback consisting of song types present in their repertoire. We assessed the degree to which the subjects' song matching rate, overlapping rate, and song-type versatility were correlated with their approach latency, closeness of approach, latency to first retreat, and time spent close to the speaker. Male age, breeding stage, and features of the playback stimuli were also considered. Song matching was associated with rapid and close approach, consistent with the receiver-perspective interpretation of type matching as a conventional signal of aggressive motivation. Overlapping was associated with earlier retreat, and together with the aversive receiver response to our previous overlapping playback experiment suggests that overlapping is a defensive withdrawal signal. High versatility was associated with slower first retreat from the speaker and high levels of reciprocal matching between subject and playback. Males with fledglings sang with particularly low versatility and approached the speaker aggressively, whereas males with nestlings overlapped more and retreated quickly. Finally, older males matched more but overlapped less.

SELECTION OF CITATIONS
SEARCH DETAIL
...