Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352838

ABSTRACT

Gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of prostate cancers. This study aimed to investigate the potential of 64Cu (radionuclide for late time-point PET-imaging) for imaging of GRPR expression using NOTA-PEG2-RM26 and NODAGA-PEG2-RM26. Methods: NOTA/NODAGA-PEG2-RM26 were labeled with 64Cu and evaluated in GRPR-expressing PC-3 cells. Biodistribution of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was studied in PC-3 xenografted mice and compared to the biodistribution of [57Co]Co-NOTA/NODAGA-PEG2-RM26 at 3 and 24 h p.i. Preclinical PET/CT imaging was performed in tumor-bearing mice. NOTA/NODAGA-PEG2-RM26 were stably labeled with 64Cu with quantitative yields. In vitro, binding of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was rapid and GRPR-specific with slow internalization. In vivo, [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 bound specifically to GRPR-expressing tumors with fast clearance from blood and normal organs and displayed generally comparable biodistribution profiles to [57Co]Co-NOTA/NODAGA-PEG2-RM26; tumor uptake exceeded normal tissue uptake 3 h p.i.. Tumor-to-organ ratios did not increase significantly with time. [64Cu]Cu-NOTA-PEG2-RM26 had a significantly higher liver and pancreas uptake compared to other agents. 57Co-labeled radioconjugates showed overall higher tumor-to-non-tumor ratios, compared to the 64Cu-labeled counterparts. [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was able to visualize GRPR-expression in a murine PC model using PET. However, [55/57Co]Co-NOTA/NODAGA-PEG2-RM26 provided better in vivo stability and overall higher tumor-to-non-tumor ratios compared with the 64Cu-labeled conjugates.


Subject(s)
Antineoplastic Agents/pharmacology , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Receptors, Bombesin/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cobalt Radioisotopes , Copper Radioisotopes , Humans , Male , Mice , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , PC-3 Cells , Prostatic Neoplasms/metabolism , Receptors, Bombesin/genetics , Receptors, Bombesin/metabolism
2.
J Nucl Med ; 61(2): 228-233, 2020 02.
Article in English | MEDLINE | ID: mdl-31519803

ABSTRACT

PET imaging at late time points after injection may allow tracer clearance from normal tissue and hence improve image contrast and detectability. 55Co is a promising isotope with high positron yield and a long half-life suitable for imaging at delayed time points. Here, we compared the 3 radioconjugates [68Ga]Ga-DOTATATE, [64Cu]Cu-DOTATATE, and [55Co]Co-DOTATATE by PET/CT imaging in NOD-SCID mice bearing subcutaneous somatostatin receptor-expressing AR42J tumors. Methods:55Co and 64Cu were produced by the 54Fe(d,n)55Co and 64Ni(p,n)64Cu nuclear reactions, whereas 68Ga was obtained from a 68Ge/68Ga generator. 55Co and 64Cu were labeled with DOTATATE by heating in a sodium acetate buffer and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, respectively. AR42J tumor-bearing mice were dynamically scanned 0-1 h after injection. For 64Cu and 55Co, additional imaging was also performed at late time points after 4 and 24 h. Dose calculations were based on a known biodistribution. The cumulated disintegrations in each organ were calculated by integration of a fitted exponential function to the biodistribution of each respective organ. Equivalent doses were calculated by OLINDA/EXM using the MIRD formalism. Results: Tumor uptake was rapid from 0 to 1 h after injection for all 3 radioconjugates. Normal-tissue ratios as represented by tumor-to-liver, tumor-to-kidney, and tumor-to-muscle ratios increased significantly over time, with [55Co]Co-DOTATATE reaching the highest ratio of all radioconjugates. For [55Co]Co-DOTATATE, the tumor-to-liver ratio increased to 65 ± 16 at 4 h and 50 ± 6 at 24 h, which were 15 (P < 0.001) and 30 (P < 0.001) times higher, respectively, than the corresponding ratios for [64Cu]Cu-DOTATATE and 5 (P < 0.001) times higher than that of [68Ga]Ga-DOTATATE at 1 h. Correspondingly, tumor-to-kidney and tumor-to-muscle ratios for [55Co]Co-DOTATATE were 4 (P < 0.001) and 11 (P < 0.001) times higher than that of [64Cu]Cu-DOTATATE at 24 h. An equivalent dose was calculated as 9.6E-02 mSv/MBq for [55Co]Co-DOTATATE. Conclusion: [55Co]Co-DOTATATE demonstrated superior image contrast compared with [64Cu]Cu-DOTATATE and [68Ga]Ga-DOTATATE for PET imaging of somatostatin receptor-expressing tumors, warranting translation into clinical trials. Dosimetry calculations found that effective doses for [55Co]Co-DOTATATE were comparable to those for both [64Cu]Cu-DOTATATE and [68Ga]Ga-DOTATATE.


Subject(s)
Cobalt Radioisotopes , Octreotide/analogs & derivatives , Organometallic Compounds , Positron-Emission Tomography/methods , Signal-To-Noise Ratio , Adult , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Male , Mice , Octreotide/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Somatostatin/metabolism , Tissue Distribution
3.
Sci Rep ; 7(1): 5961, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28729680

ABSTRACT

Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with 57Co (T1/2 = 271.8 d), 55Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57Co was used in animal studies. Both 57Co-DOTA-ZEGFR:2377 and 68Ga-DOTA-ZEGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-ZEGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57Co-DOTA-ZEGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68Ga-DOTA-ZEGFR:2377. The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-ZEGFR:2377 and further development should concentrate on this radionuclide as a label.


Subject(s)
Coordination Complexes/chemistry , ErbB Receptors/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Imaging, Three-Dimensional , Radioisotopes/chemistry , Recombinant Fusion Proteins/metabolism , Animals , Cell Line, Tumor , Female , Mice, Inbred BALB C , Mice, Nude , Positron-Emission Tomography , Tissue Distribution , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
4.
J Nucl Med ; 56(10): 1562-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26229144

ABSTRACT

UNLABELLED: Brain tumor volume assessment is a major challenge. Molecular imaging using PET may be a promising option because it reflects the biologically active cells. We compared the agreement between PET- and histology-derived tumor volumes in an orthotopic glioblastoma rat model with a noninfiltrating (U87MG) and an infiltrating (T87) tumor phenotype using 2 different radiotracers, 2 different image reconstruction algorithms, parametric imaging, and 2 different image segmentation techniques. METHODS: Rats with U87MG- and T87-derived glioblastomas were continuously scanned with PET for 1 h starting immediately after the injection of 11C-methylaminoisobutyric acid (11C-MeAIB). One hour later, 18F-FDG was injected, followed by a 3-h dynamic PET scan. Images were reconstructed using 2-dimensional ordered-subsets expectation maximization and 3-dimensional maximum a posteriori probability (MAP3D) algorithms. In addition, a parametric image, encompassing the entire tumor kinetics in a single image, was calculated on the basis of the 11C-MeAIB images. All reconstructed images were segmented by fixed thresholding of maximum voxel intensity (VImax) and mean background intensity. The agreement between PET- and histology-derived tumor volumes and intra- and interobserver agreement of the PET-derived volumes were evaluated using Bland-Altman plots. RESULTS: By PET, the mean U87MG tumor volume was 35.0 mm3 using 18F-FDG and 34.1 mm3 with 11C-MeAIB, compared with 33.7 mm3 by histology. Corresponding T87 tumor volumes were 122.1 mm3 using 18F-FDG, 118.3 mm3 with 11C-MeAIB, and 125.4 mm3 by histology. None of these volumes were significantly different. The best agreement between PET- and histology-derived U87MG tumor volumes was achieved with 11C-MeAIB, MAP3D reconstruction, and fixed thresholding of VImax. The intra- and interobserver agreement was high using this method. For T87 tumors, the best agreement between PET- and histology-derived volumes was obtained using 18F-FDG, MAP3D reconstruction, and fixed thresholding of mean background intensity. The agreement using 11C-MeAIB, parametric imaging, and fixed thresholding of VImax was slightly inferior, but the intra- and interobserver agreement was clearly superior. CONCLUSION: Estimation of tumor volume by PET of noninfiltrating brain tumors was accurate and reproducible. In contrast, tumor volume estimation by PET of infiltrating brain tumors was difficult and hard to reproduce. On the basis of our results, PET evaluation of highly infiltrating brain tumors should be further developed.


Subject(s)
Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Glioblastoma/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , beta-Alanine/analogs & derivatives , Animals , Humans , Immunohistochemistry , Male , Neoplasm Transplantation , Observer Variation , Rats , Rats, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...