Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38716728

ABSTRACT

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Subject(s)
Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
2.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762230

ABSTRACT

Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aß42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aß42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aß42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aß42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Filamins/metabolism , Mice, Transgenic , Peptide Fragments/metabolism
3.
Nat Metab ; 5(10): 1673-1684, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37709961

ABSTRACT

The glucagon-like peptide 1 receptor (GLP1R) is a major drug target with several agonists being prescribed in individuals with type 2 diabetes and obesity1,2. The impact of genetic variability of GLP1R on receptor function and its association with metabolic traits are unclear with conflicting reports. Here, we show an unexpected diversity of phenotypes ranging from defective cell surface expression to complete or pathway-specific gain of function (GoF) and loss of function (LoF), after performing a functional profiling of 60 GLP1R variants across four signalling pathways. The defective insulin secretion of GLP1R LoF variants is rescued by allosteric GLP1R ligands or high concentrations of exendin-4/semaglutide in INS-1 823/3 cells. Genetic association studies in 200,000 participants from the UK Biobank show that impaired GLP1R cell surface expression contributes to poor glucose control and increased adiposity with increased glycated haemoglobin A1c and body mass index. This study defines impaired GLP1R cell surface expression as a risk factor for traits associated with type 2 diabetes and obesity and provides potential treatment options for GLP1R LoF variant carriers.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Humans , Insulin/metabolism , Diabetes Mellitus, Type 2/genetics , Adiposity/genetics , Obesity/genetics
4.
PLoS One ; 18(4): e0283941, 2023.
Article in English | MEDLINE | ID: mdl-37014877

ABSTRACT

Intracellular accumulation of tau protein is a hallmark of Alzheimer's Disease and Progressive Supranuclear Palsy, as well as other neurodegenerative disorders collectively known as tauopathies. Despite our increasing understanding of the mechanisms leading to the initiation and progression of tau pathology, the field still lacks appropriate disease models to facilitate drug discovery. Here, we established a novel and modulatable seeding-based neuronal model of full-length 4R tau accumulation using humanized mouse cortical neurons and seeds from P301S human tau transgenic animals. The model shows specific and consistent formation of intraneuronal insoluble full-length 4R tau inclusions, which are positive for known markers of tau pathology (AT8, PHF-1, MC-1), and creates seeding competent tau. The formation of new inclusions can be prevented by treatment with tau siRNA, providing a robust internal control for use in qualifying the assessment of potential therapeutic candidates aimed at reducing the intracellular pool of tau. In addition, the experimental set up and data analysis techniques used provide consistent results in larger-scale designs that required multiple rounds of independent experiments, making this is a versatile and valuable cellular model for fundamental and early pre-clinical research of tau-targeted therapies.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Mice, Transgenic , Brain/metabolism , Tauopathies/metabolism , Alzheimer Disease/pathology , Neurons/metabolism , Drug Discovery
5.
Elife ; 122023 03 14.
Article in English | MEDLINE | ID: mdl-36917493

ABSTRACT

Aggregates of the tau protein are a well-known hallmark of several neurodegenerative diseases, collectively referred to as tauopathies, including frontal temporal dementia and Alzheimer's disease (AD). Monitoring the transformation process of tau from physiological monomers into pathological oligomers or aggregates in a high-throughput, quantitative manner and in a cellular context is still a major challenge in the field. Identifying molecules able to interfere with those processes is of high therapeutic interest. Here, we developed a series of inter- and intramolecular tau biosensors based on the highly sensitive Nanoluciferase (Nluc) binary technology (NanoBiT) able to monitor the pathological conformational change and self-interaction of tau in living cells. Our repertoire of tau biosensors reliably reports i. molecular proximity of physiological full-length tau at microtubules; ii. changes in tau conformation and self-interaction associated with tau phosphorylation, as well as iii. tau interaction induced by seeds of recombinant tau or from mouse brain lysates of a mouse model of tau pathology. By comparing biosensors comprising different tau forms (i.e. full-length or short fragments, wild-type, or the disease-associated tau(P301L) variant) further insights into the tau transformation process are obtained. Proof-of-concept data for the high-throughput suitability and identification of molecules interfering with the pathological tau transformation processes are presented. This novel repertoire of tau biosensors is aimed to boost the disclosure of molecular mechanisms underlying pathological tau transformation in living cells and to discover new drug candidates for tau-related neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/metabolism , Tauopathies/pathology , Microtubules/metabolism , Neurons/physiology , Brain/metabolism
6.
Eur J Med Chem ; 249: 115152, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36724633

ABSTRACT

COVID-19 is a complex disease with short-term and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. As many drugs targeting single targets showed only limited effectiveness against COVID-19, here, we aimed to explore a multi-target strategy. We synthesized a focused compound library based on C2-substituted indolealkylamines (tryptamines and 5-hydroxytryptamines) with activity for three potential COVID-19-related proteins, namely melatonin receptors, calmodulin and human angiotensin converting enzyme 2 (hACE2). Two molecules from the library, 5e and h, exhibit affinities in the high nanomolar range for melatonin receptors, inhibit the calmodulin-dependent calmodulin kinase II activity and the interaction of the SARS-CoV-2 Spike protein with hACE2 at micromolar concentrations. Both compounds inhibit SARS-CoV-2 entry into host cells and 5h decreases SARS-CoV-2 replication and MPro enzyme activity in addition. In conclusion, we provide a proof-of-concept for the successful design of multi-target compounds based on the tryptamine scaffold. Optimization of these preliminary hit compounds could potentially provide drug candidates to treat COVID-19 and other coronavirus diseases.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Calmodulin , Receptors, Melatonin
8.
PLoS One ; 17(12): e0278965, 2022.
Article in English | MEDLINE | ID: mdl-36512575

ABSTRACT

Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.


Subject(s)
Leptin , Neuroblastoma , Humans , Leptin/metabolism , Receptors, Leptin/genetics , Homocysteine/pharmacology , Cysteine/pharmacology , Endoplasmic Reticulum Stress , STAT3 Transcription Factor/metabolism , Obesity/metabolism , Methionine/pharmacology
9.
Indoor Air ; 32(8): e13086, 2022 08.
Article in English | MEDLINE | ID: mdl-36040281

ABSTRACT

Burning candles at home emit small particles and gases that pollute indoor air. Exposure to fine particles in outdoor air has been convincingly linked to cardiovascular and respiratory events, while the associations with fine and ultrafine particles from candle burning remain unexplored. We examined the association between the use of candles and incident cardiovascular and respiratory events. We collected data on 6757 participants of the Copenhagen Aging and Midlife Biobank cohort recruited in 2009 and followed them up for the first hospital contact for incident cardiovascular and respiratory events until 2018. We investigated an association between the self-reported frequency of candle use in wintertime and cardiovascular and respiratory events, using Cox regression models adjusting for potential confounders. During follow-up, 1462 and 834 were admitted for cardiovascular and respiratory events, respectively. We found null associations between candle use and a hospital contact due to cardiovascular and respiratory events, with hazard ratios (HRs) and 95% confidence intervals (CI) of 0.97 (95% CI: 0.84, 1.11) and 0.98 (95% CI: 0.81, 1.18), respectively, among those using candles >4 times/week compared with <1 time/week. For cause-specific cardiovascular diseases, HRs were 1.10 (95% CI: 0.85, 1.43) for ischemic heart disease and 1.18 (95% CI: 0.77, 1.81) for myocardial infarction. For chronic obstructive pulmonary disease, HR was 1.26 (95% CI: 0.81, 1.97). We found no statistically significant associations between candle use and the risk of cardiovascular and respiratory events. Studies with improved exposure assessments are warranted.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis
10.
Cell Mol Life Sci ; 79(7): 361, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35697820

ABSTRACT

COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , Melatonin , Angiotensin-Converting Enzyme 2 , Animals , Brain/metabolism , Endothelial Cells/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A , SARS-CoV-2
11.
J Pineal Res ; 72(1): e12772, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34586649

ABSTRACT

As the COVID-19 pandemic grows, several therapeutic candidates are being tested or undergoing clinical trials. Although prophylactic vaccination against SARS-CoV-2 infection has been shown to be effective, no definitive treatment exists to date in the event of infection. The rapid spread of infection by SARS-CoV-2 and its variants fully warrants the continued evaluation of drug treatments for COVID-19, especially in the context of repurposing of already available and safe drugs. Here, we explored the therapeutic potential of melatonin and melatonergic compounds in attenuating COVID-19 pathogenesis in mice expressing human ACE2 receptor (K18-hACE2), strongly susceptible to SARS-CoV-2 infection. Daily administration of melatonin, agomelatine, or ramelteon delays the occurrence of severe clinical outcome with improvement of survival, especially with high melatonin dose. Although no changes in most lung inflammatory cytokines are observed, treatment with melatonergic compounds limits the exacerbated local lung production of type I and type III interferons, which is likely associated with the observed improved symptoms in treated mice. The promising results from this preclinical study should encourage studies examining the benefits of repurposing melatonergic drugs to treat COVID-19 and related diseases in humans.


Subject(s)
Acetamides/pharmacology , COVID-19 Drug Treatment , COVID-19 , Indenes/pharmacology , Melatonin/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Viral Load/drug effects
12.
Cell Chem Biol ; 29(1): 74-83.e4, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34246414

ABSTRACT

Targeting the interaction between the SARS-CoV-2 spike protein and human ACE2, its primary cell membrane receptor, is a promising therapeutic strategy to prevent viral entry. Recent in vitro studies revealed that the receptor binding domain (RBD) of the spike protein plays a prominent role in ACE2 binding, yet a simple and quantitative assay for monitoring this interaction in a cellular environment is lacking. Here, we developed an RBD-ACE2 binding assay that is based on time-resolved FRET, which reliably monitors the interaction in a physiologically relevant and cellular context. Because it is modular, the assay can monitor the impact of different cellular components, such as heparan sulfate, lipids, and membrane proteins on the RBD-ACE2 interaction and it can be extended to the full-length spike protein. The assay is HTS compatible and can detect small-molecule competitive and allosteric modulators of the RBD-ACE2 interaction with high relevance for SARS-CoV-2 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Fluorescence Resonance Energy Transfer , Spike Glycoprotein, Coronavirus/chemistry , Cells, Cultured , HEK293 Cells , Humans , Protein Binding , Time Factors
13.
STAR Protoc ; 3(1): 101024, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34841271

ABSTRACT

The SARS-CoV-2 coronavirus infects human cells through the interaction of the viral envelope spike protein (IPR044366) with the human angiotensin-converting enzyme 2 (ACE2), expressed at the surface of target cells. Here, we describe a detailed protocol to measure the binding of the receptor binding domain (RBD) of spike to ACE2 by time-resolved fluorescence resonance energy transfer (TR-FRET). The assay detects the spike/ACE2 interaction in physiologically relevant cellular contexts and is suitable for high-throughput investigation of interfering small-molecule compounds and antibodies. For complete details on the use and execution of this protocol, please refer to Cecon et al. (2021).


Subject(s)
Fluorescence Resonance Energy Transfer/methods , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/metabolism , HEK293 Cells , Humans , Protein Binding/physiology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
14.
Nat Metab ; 3(8): 1071-1090, 2021 08.
Article in English | MEDLINE | ID: mdl-34341568

ABSTRACT

Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic ß-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.


Subject(s)
Brain/metabolism , Ependymoglial Cells/metabolism , ErbB Receptors/metabolism , Leptin/metabolism , Lipid Metabolism , Pancreas/metabolism , Receptors, Leptin/metabolism , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Energy Metabolism , Insulin-Secreting Cells/metabolism , Phosphorylation
15.
Neuroendocrinology ; 111(4): 370-387, 2021.
Article in English | MEDLINE | ID: mdl-32335558

ABSTRACT

INTRODUCTION: Metabolic dysfunction is now recognized as a pivotal component of Alzheimer's disease (AD), the most common dementia worldwide. However, the precise molecular mechanisms linking metabolic dysfunction to AD remain elusive. OBJECTIVE: Here, we investigated the direct impact of soluble oligomeric amyloid beta (Aß) peptides, the main molecular hallmark of AD, on the leptin system, a major component of central energy metabolism regulation. METHODS: We developed a new time-resolved fluorescence resonance energy transfer-based Aß binding assay for the leptin receptor (LepR) and studied the effect of Aß on LepR function in several in vitro assays. The in vivo effect of Aß on LepR function was studied in an Aß-specific AD mouse model and in pro-opiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus. RESULTS: We revealed specific and high-affinity (Ki = 0.1 nM) binding of Aß to LepR. Pharmacological characterization of this interaction showed that Aß binds allosterically to the extracellular domain of LepR and negatively affects receptor function. Negative allosteric modulation of LepR by Aß was detected at the level of signaling pathways (STAT-3, AKT, and ERK) in vitroand in vivo. Importantly, the leptin-induced response of POMC neurons, key players in the regulation of metabolic function, was completely abolished in the presence of Aß. CONCLUSION: Our data indicate that Aß is a negative allosteric modulator of LepR, resulting in impaired leptin action, and qualify LepR as a new and direct target of Aß oligomers. Preventing the interaction of Aß with LepR might improve both the metabolic and cognitive dysfunctions in AD condition.


Subject(s)
Allosteric Regulation/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Leptin/metabolism , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/metabolism , Animals , Cell Line , Disease Models, Animal , HEK293 Cells , Humans , Male , Mice , Signal Transduction/physiology
17.
Cell Mol Life Sci ; 77(24): 5189-5205, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31900622

ABSTRACT

Transmission of extracellular signals by G protein-coupled receptors typically relies on a cascade of intracellular events initiated by the activation of heterotrimeric G proteins or ß-arrestins followed by effector activation/inhibition. Here, we report an alternative signal transduction mode used by the orphan GPR50 that relies on the nuclear translocation of its carboxyl-terminal domain (CTD). Activation of the calcium-dependent calpain protease cleaves off the CTD from the transmembrane-bound GPR50 core domain between Phe-408 and Ser-409 as determined by MALDI-TOF-mass spectrometry. The cytosolic CTD then translocates into the nucleus assisted by its 'DPD' motif, where it interacts with the general transcription factor TFII-I to regulate c-fos gene transcription. RNA-Seq analysis indicates a broad role of the CTD in modulating gene transcription with ~ 8000 differentially expressed genes. Our study describes a non-canonical, direct signaling mode of GPCRs to the nucleus with similarities to other receptor families such as the NOTCH receptor.


Subject(s)
Nerve Tissue Proteins/genetics , Protein Transport/genetics , Receptors, G-Protein-Coupled/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Protein Binding/genetics , Receptors, Notch , Signal Transduction/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
ACS Sens ; 5(1): 57-64, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31849219

ABSTRACT

ß-Arrestins are critical regulators of G protein-coupled receptors (GPCRs) that desensitize G protein signaling, promote receptor internalization, and initiate signaling on their own. Recent structural findings indicate that ß-arrestins adopt different conformations upon interaction with agonist-activated GPCRs. Here, we established a ß-arrestin-2 conformational bioluminescence resonance energy transfer (BRET) sensor composed of the bright Nanoluc BRET donor and the red-shifted CyOFP1 BRET acceptor. The sensor monitors early intramolecular conformational changes of ß-arrestin-2 in complex with a wide panel of different class A and class B GPCRs upon agonist activation and with orphan GPCRs known to spontaneously recruit ß-arrestin-2. The introduction of the R170E mutant in the ß-arrestin-2 sensor allowed the detection of a partially active ß-arrestin-2 conformation, which is not dependent on receptor phosphorylation, while the deletion of the ß-arrestin-2 finger-loop region detected the "tail-conformation" corresponding to the interaction of ß-arrestin with the carboxyl-terminal domain of GPCRs. The new sensors combine the advantages of the BRET technique in terms of sensitivity, robustness, and suitability for real-time measurements with a high responsiveness toward early conformational changes to help to elucidate the different conformational states of ß-arrestins associated with GPCR activation in living cells.


Subject(s)
Biosensing Techniques/methods , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/chemistry , Humans
19.
Br J Pharmacol ; 176(18): 3475-3488, 2019 09.
Article in English | MEDLINE | ID: mdl-30981214

ABSTRACT

BACKGROUND AND PURPOSE: Progressive dysfunction of cholinergic transmission is a well-known characteristic of Alzheimer's disease (AD). Amyloid ß (Aß) peptide oligomers are known to play a central role in AD and are suggested to impair the function of the cholinergic nicotinic ACh receptor α7 (α7nAChR). However, the mechanism underlying the effect of Aß on α7nAChR function is not fully understood, limiting the therapeutic exploration of this observation in AD. Here, we aimed to detect and characterize Aß binding to α7nAChR, including the possibility of interfering with this interaction for therapeutic purposes. EXPERIMENTAL APPROACH: We developed a specific and quantitative time-resolved FRET (TR-FRET)-based binding assay for Aß to α7nAChR and pharmacologically characterized this interaction. KEY RESULTS: We demonstrated specific and high-affinity (low nanomolar) binding of Aß to the orthosteric binding site of α7nAChR. Aß binding was prevented and reversed by the well-characterized orthosteric ligands of α7nAChR (epibatidine, α-bungarotoxin, methylylcaconitine, PNU-282987, S24795, and EVP6124) and by the type II positive allosteric modulator (PAM) PNU-120596 but not by the type I PAM NS1738. CONCLUSIONS AND IMPLICATIONS: Our TR-FRET Aß binding assay demonstrates for the first time the specific binding of Aß to α7nAChR, which will be a crucial tool for the development, testing, and selection of a novel generation of AD drug candidates targeting Aß/α7nAChR complexes with high specificity and fewer side effects compared to currently approved α7nAChR drugs. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Subject(s)
Amyloid beta-Peptides/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacology , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bungarotoxins/pharmacology , HEK293 Cells , Humans , Isoxazoles/pharmacology , Ligands , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Pyridinium Compounds/pharmacology , Quinuclidines/pharmacology , Thiophenes/pharmacology
20.
Cell Mol Life Sci ; 76(6): 1201-1214, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30659329

ABSTRACT

Leptin links body energy stores to high energy demanding processes like reproduction and immunity. Based on leptin's role in autoimmune diseases and cancer, several leptin and leptin receptor (LR) antagonists have been developed, but these intrinsically lead to unwanted weight gain. Here, we report on the uncoupling of leptin's metabolic and immune functions based on the cross talk with the epidermal growth factor receptor (EGFR). We show that both receptors spontaneously interact and, remarkably, that this complex can partially overrule the lack of LR activation by a leptin antagonistic mutein. Moreover, this leptin mutant induces EGFR phosphorylation comparable to wild-type leptin. Exploiting this non-canonical leptin signalling pathway, we identified a camelid single-domain antibody that selectively inhibits this LR-EGFR cross talk without interfering with homotypic LR signalling. Administration in vivo showed that this single-domain antibody did not interfere with leptin's metabolic functions, but could reverse the leptin-driven protection against starvation-induced thymic and splenic atrophy. These findings offer new opportunities for the design and clinical application of selective leptin and LR antagonists that avoid unwanted metabolic side effects.


Subject(s)
Leptin/immunology , Leptin/metabolism , Receptors, Leptin/antagonists & inhibitors , Receptors, Leptin/metabolism , Single-Domain Antibodies/pharmacology , Animals , Camelids, New World/immunology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , HEK293 Cells , Humans , Leptin/genetics , Ligands , Mice, Inbred C57BL , Mutation , Protein Binding/drug effects , Receptor Cross-Talk/drug effects , Receptors, Leptin/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...