Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 28(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37241813

ABSTRACT

With the aim to develop polymers with appealing, multifunctional characteristics, a series of polyimides were designed by anchoring 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) units on the main polymer chains containing 1,3,5-triazine and several flexible moieties, such as ether, hexafluoroisopropylidene, or isopropylidene. A detailed study was conducted to establish structure-property correlations, with a focus on the synergistic effectiveness of triazine and DOPO moieties on the overall features of polyimides. The results evidenced good solubility of the polymers in organic solvents, their amorphous nature with short-range regular-packed polymer chains, and high thermal stability with no glass transition temperature below 300 °C. Spectrophotometric measurements revealed the existence of a strong charge transfer complex in these polymers that led to a "black" appearance, which generated broad absorption bands spanning on the overall visible range. Nevertheless, these polymers displayed green light emission associated with 1,3,5-triazine emitter. The electrochemical characteristics of the polyimides in solid state demonstrated their strong n-type doping character induced by three different structural elements with electron-acceptance capability. The useful properties of these polyimides, including optical, thermal, electrochemical, aesthetics, and opaqueness, endow them with several possible applications in the microelectronic field, such as protecting layers for the inner circuits against UV light deterioration.

2.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144497

ABSTRACT

Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier's mobility, with a direct impact on the bandgap energy. The optical properties studied by UV-Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices.

3.
J Phys Chem B ; 125(30): 8588-8600, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34313112

ABSTRACT

Three polyazomethines and their corresponding model compounds were protonated with trifluoroacetic acid, and its effect on their optical (UV-vis absorption and photoluminescence) properties and electrochemical behavior has been studied, in the context of the presence and elongation of alkoxy side groups. Moreover, the effect of environment dielectric constants (i.e., polarity of the solvent) was considered on the doping process. It has been proven that the presence of alkoxy side groups is necessary for protonation to occur, while unsubstituted compounds undergo hydrolysis to constitutive units. Acid doping of imines consisting of alkoxy side chains has resulted in a distinct bathochromic shift (>200 nm) of the low-energy absorption band. Even the length of alkyl chains has not affected the position of shifted bands; it has been observed that azomethines with smaller, methoxy side groups undergo the protonation process much faster than their octyloxy-substituted analogues, due to the absence of steric hindrance. The electrochemical studies of these alkoxy-substituted imines have indicated a better p-type behavior after protonation induced by the capability of the protonated form to easily oxidize in acetonitrile and to generate the native molecules. The environmental polarity has also had impact on the doping process, which took place only in low-polar media.


Subject(s)
Schiff Bases , Thiophenes , Alcohols , Imines , Solvents
4.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809999

ABSTRACT

Aromatic polyimides containing side azo-naphthalene groups have been investigated regarding their capacity of generating surface relief gratings (SRGs) under pulsed UV laser irradiation through phase masks, using different fluencies and pulse numbers. The process of the material photo-fluidization and the supramolecular re-organization of the surface were investigated using atomic force microscopy (AFM). At first, an AFM nanoscale topographical analysis of the induced SRGs was performed in terms of morphology and tridimensional amplitude, spatial, hybrid, and functional parameters. Afterward, a nanomechanical characterization of SRGs using an advanced method, namely, AFM PinPoint mode, was performed, where the quantitative nanomechanical properties (i.e., modulus, adhesion, deformation) of the nanostructured azo-polyimide surfaces were acquired with a highly correlated topographic registration. This method proved to be very effective in understanding the formation mechanism of the surface modulations during pulsed UV laser irradiation. Additionally to AFM investigations, confocal Raman measurements and molecular simulations were performed to provide information about structured azo-polyimide chemical composition and macromolecular conformation induced by laser irradiation.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119242, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33296751

ABSTRACT

The influence of presence and elongation of alkoxy side chains in the π-conjugated Schiff-bases has been considered on the basis of UV-Vis absorption and photoluminescence spectra of model compounds and polymers solutions in chloroform and binary solvents of different polarity. The results of these investigations have been supported by electrochemical data. It has been demonstrated that introduction of electron donating methoxy side groups decreases the energy gap, however the elongation of alkyl chains only slightly affects the electronic structure of model compounds. In the case of polymers, such octyloxy side chains improves the solubility, enabling formation of longer polymer chains, with the enhanced effective π-conjugation length and narrower energy gap, however the intensity of emission band clearly decreased. Positive solvatochromism has been observed in both absorbance and photoluminescence spectra for all investigated compounds. As the concluding task, bulk-heterojunction (BHJ) photovoltaic (PV) structures, consisting of polyazomethines blended with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) have been prepared and tested in the context of potential application in solar cells. All investigated polymers have shown the photovoltaic effect, but the best power conversion efficiency and other PV parameters have been obtained for polyazomthine with octyloxy side chains.

6.
Article in English | MEDLINE | ID: mdl-24675592

ABSTRACT

The influence of crystallization reaction time on CaCO3 microparticle growth from supersaturate aqueous solutions, in the presence of a conjugate drug-copolymer, has been investigated. The polymer conjugate, P(NVP-MA-Ox), is based on poly(N-vinylpyrrolidone-co-maleic anhydride) as the support and 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole as the drug. The microparticles are characterized by optical, scanning and transmission electron microscopy, dynamic light scattering, X-ray diffraction, flow particle image analysis and particle charge density. X-ray diffraction (XRD) investigations showed that calcite polymorph content increased with an increase in crystallization time, even if the electrostatic interactions between Ca(2+) and polyanionic sites of P(NVP-MA-Ox) structure conduct to an increased vaterite phase stability. The strong particle size increase after 6 h of ageing can be ascribed to partially vaterite recrystallization and adsorption of nano-scaled calcite crystallite nuclei at microparticles surfaces. The pH stability of the particles was shown by zeta potential changes and their adsorption capacity as a function of their composition, and characteristics were tested using methylene blue. The sorption capacity of composite materials was strongly influenced by the ratio between polymorphs in the composites, and increased with the increase of calcite content and ageing time.


Subject(s)
Calcium Carbonate/chemistry , Biocompatible Materials/chemistry , Crystallization/methods , Drug Stability , Hydrogen-Ion Concentration , Maleates/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxadiazoles/chemistry , Particle Size , Polyelectrolytes , Polymers/chemistry , Povidone/chemistry , Static Electricity , X-Ray Diffraction
7.
Microsc Microanal ; 18(3): 545-57, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22640965

ABSTRACT

Among the many aspects of laser ablation, development of conical structures induced by excimer laser radiation on polyimide surfaces has been thoroughly investigated. Because the mechanisms that produce these surface textures are not fully understood, two theories, photochemical bond breaking and thermal reaction, have been introduced. Here we present the first study of ultraviolet laser ablation behavior of thin films made from fluorinated poly(naphthyl-imide)s containing oxadiazole rings and the investigation of the mechanism of cone-like structure formation at two laser fluences, 57 and 240 mJ/cm(2). The morphology of thin films before and after laser ablation was studied by using various spectroscopy techniques such as Fourier transform infrared spectroscopy, time-resolved emission and X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. All of the data suggest impurities shielded at low fluence radiation (57 mJ/cm(2)) and a radiation hardening process at high value fluence (240 mJ/cm(2)), which are proposed as the main mechanisms for laser ablation of our polyimide films, and we bring evidence to support them.

SELECTION OF CITATIONS
SEARCH DETAIL
...