Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887880

ABSTRACT

The interplay between neurology and cardiology has gained significant attention in recent years, particularly regarding the shared pathophysiological mechanisms and clinical comorbidities observed in epilepsy and arrhythmias. Neuro-cardiac electrophysiology mapping involves the comprehensive assessment of both neural and cardiac electrical activity, aiming to unravel the intricate connections and potential cross-talk between the brain and the heart. The emergence of artificial intelligence (AI) has revolutionized the field by enabling the analysis of large-scale data sets, complex signal processing, and predictive modeling. AI algorithms have been applied to neuroimaging, electroencephalography (EEG), electrocardiography (ECG), and other diagnostic modalities to identify subtle patterns, classify disease subtypes, predict outcomes, and guide personalized treatment strategies. In this review, we highlight the potential clinical implications of neuro-cardiac mapping and AI in the management of epilepsy and arrhythmias. We address the challenges and limitations associated with these approaches, including data quality, interpretability, and ethical considerations. Further research and collaboration between neurologists, cardiologists, and AI experts are needed to fully unlock the potential of this interdisciplinary field.

2.
J Imaging ; 9(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623681

ABSTRACT

Pancreatic carcinoma (Ca Pancreas) is the third leading cause of cancer-related deaths in the world. The malignancies of the pancreas can be diagnosed with the help of various imaging modalities. An endoscopic ultrasound with a tissue biopsy is so far considered to be the gold standard in terms of the detection of Ca Pancreas, especially for lesions <2 mm. However, other methods, like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), are also conventionally used. Moreover, newer techniques, like proteomics, radiomics, metabolomics, and artificial intelligence (AI), are slowly being introduced for diagnosing pancreatic cancer. Regardless, it is still a challenge to diagnose pancreatic carcinoma non-invasively at an early stage due to its delayed presentation. Similarly, this also makes it difficult to demonstrate an association between Ca Pancreas and other vital organs of the body, such as the heart. A number of studies have proven a correlation between the heart and pancreatic cancer. The tumor of the pancreas affects the heart at the physiological, as well as the molecular, level. An overexpression of the SMAD4 gene; a disruption in biomolecules, such as IGF, MAPK, and ApoE; and increased CA19-9 markers are a few of the many factors that are noted to affect cardiovascular systems with pancreatic malignancies. A comprehensive review of this correlation will aid researchers in conducting studies to help establish a definite relation between the two organs and discover ways to use it for the early detection of Ca Pancreas.

3.
Sensors (Basel) ; 23(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37420919

ABSTRACT

The measurement of physiologic pressure helps diagnose and prevent associated health complications. From typical conventional methods to more complicated modalities, such as the estimation of intracranial pressures, numerous invasive and noninvasive tools that provide us with insight into daily physiology and aid in understanding pathology are within our grasp. Currently, our standards for estimating vital pressures, including continuous BP measurements, pulmonary capillary wedge pressures, and hepatic portal gradients, involve the use of invasive modalities. As an emerging field in medical technology, artificial intelligence (AI) has been incorporated into analyzing and predicting patterns of physiologic pressures. AI has been used to construct models that have clinical applicability both in hospital settings and at-home settings for ease of use for patients. Studies applying AI to each of these compartmental pressures were searched and shortlisted for thorough assessment and review. There are several AI-based innovations in noninvasive blood pressure estimation based on imaging, auscultation, oscillometry and wearable technology employing biosignals. The purpose of this review is to provide an in-depth assessment of the involved physiologies, prevailing methodologies and emerging technologies incorporating AI in clinical practice for each type of compartmental pressure measurement. We also bring to the forefront AI-based noninvasive estimation techniques for physiologic pressure based on microwave systems that have promising potential for clinical practice.


Subject(s)
Artificial Intelligence , Blood Pressure Determination , Humans , Blood Pressure , Blood Pressure Determination/methods , Oscillometry
4.
Sensors (Basel) ; 23(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36850899

ABSTRACT

Production of bowel sounds, established in the 1900s, has limited application in existing patient-care regimes and diagnostic modalities. We review the physiology of bowel sound production, the developments in recording technologies and the clinical application in various scenarios, to understand the potential of a bowel sound recording and analysis device-the phonoenterogram in future gastroenterological practice. Bowel sound production depends on but is not entirely limited to the type of food consumed, amount of air ingested and the type of intestinal contractions. Recording technologies for extraction and analysis of these include the wavelet-based filtering, autoregressive moving average model, multivariate empirical mode decompression, radial basis function network, two-dimensional positional mapping, neural network model and acoustic biosensor technique. Prior studies evaluate the application of bowel sounds in conditions such as intestinal obstruction, acute appendicitis, large bowel disorders such as inflammatory bowel disease and bowel polyps, ascites, post-operative ileus, sepsis, irritable bowel syndrome, diabetes mellitus, neurodegenerative disorders such as Parkinson's disease and neonatal conditions such as hypertrophic pyloric stenosis. Recording and analysis of bowel sounds using artificial intelligence is crucial for creating an accessible, inexpensive and safe device with a broad range of clinical applications. Microwave-based digital phonoenterography has huge potential for impacting GI practice and patient care.


Subject(s)
Gastroenterology , Inflammatory Bowel Diseases , Infant, Newborn , Humans , Artificial Intelligence , Microwaves , Neural Networks, Computer
5.
Article in English | MEDLINE | ID: mdl-35463194

ABSTRACT

Hypertrophic Cardiomyopathy (HCM) is the most common genetic heart disease in the US and is known to cause sudden death (SCD) in young adults. While significant advancements have been made in HCM diagnosis and management, there is a need to identify HCM cases from electronic health record (EHR) data to develop automated tools based on natural language processing guided machine learning (ML) models for accurate HCM case identification to improve management and reduce adverse outcomes of HCM patients. Cardiac Magnetic Resonance (CMR) Imaging, plays a significant role in HCM diagnosis and risk stratification. CMR reports, generated by clinician annotation, offer rich data in the form of cardiac measurements as well as narratives describing interpretation and phenotypic description. The purpose of this study is to develop an NLP-based interpretable model utilizing impressions extracted from CMR reports to automatically identify HCM patients. CMR reports of patients with suspected HCM diagnosis between the years 1995 to 2019 were used in this study. Patients were classified into three categories of yes HCM, no HCM and, possible HCM. A random forest (RF) model was developed to predict the performance of both CMR measurements and impression features to identify HCM patients. The RF model yielded an accuracy of 86% (608 features) and 85% (30 features). These results offer promise for accurate identification of HCM patients using CMR reports from EHR for efficient clinical management transforming health care delivery for these patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...