Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Transfusion ; 63(3): 610-618, 2023 03.
Article in English | MEDLINE | ID: mdl-36744388

ABSTRACT

BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).


Subject(s)
Blood Group Antigens , Pregnancy , Female , Humans , HEK293 Cells , Prevalence , Blood Group Antigens/genetics , Isoantibodies , Molecular Structure
2.
Br J Haematol ; 200(6): 812-820, 2023 03.
Article in English | MEDLINE | ID: mdl-36464247

ABSTRACT

Hypoxia-mediated red blood cell (RBC) sickling is central to the pathophysiology of sickle cell disease (SCD). The signalling nucleoside adenosine is thought to play a significant role in this process. This study investigated expression of the erythrocyte type 1 equilibrative nucleoside transporter (ENT1), a key regulator of plasma adenosine, in adult patients with SCD and carriers of sickle cell trait (SCT). Relative quantitative expression analysis of erythrocyte ENT1 was carried out by Western blot and flow cytometry. Patients with SCD with steady state conditions, either with SS or SC genotype, untreated or under hydroxycarbamide (HC) treatment, exhibited a relatively high variability of erythrocyte ENT1, but with levels not significantly different from normal controls. Most strikingly, expression of erythrocyte ENT1 was found to be significantly decreased in patients with SCD undergoing painful vaso-occlusive episode and, unexpectedly, also in healthy SCT carriers. Promoting hypoxia-induced adenosine signalling, the reduced expression of erythrocyte ENT1 might contribute to the pathophysiology of SCD and to the susceptibility of SCT individuals to altitude hypoxia or exercise to exhaustion.


Subject(s)
Sickle Cell Trait , Humans , Adenosine , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Erythrocytes/metabolism , Hypoxia/metabolism
3.
Clin Breast Cancer ; 21(5): e584-e593, 2021 10.
Article in English | MEDLINE | ID: mdl-33832852

ABSTRACT

BACKGROUND: Epirubicin is metabolized by uridine glucuronosyltransferase 2B7 (UGT2B7). Patients homozygous for the minor allele (CC) in the UGT2B7 -161 promoter polymorphism have lower clearance and significantly higher rates of leukopenia compared to wild-type homozygote (TT) or heterozygote (CT) patients. This study was designed to determine if TT and CT genotype patients could tolerate a higher epirubicin dose compared to CC genotype patients. PATIENTS AND METHODS: We studied women with histologically confirmed non-metastatic, invasive breast cancer who were scheduled to receive at least three cycles of FE100C in the (neo)adjuvant setting. Patients received standard-dose FE100C during the first 21-day cycle. Based on genotype, the epirubicin dose was escalated in the second and third cycles to 115 and 130 mg/m2 or to 120 and 140 mg/m2 for CT and TT genotype patients, respectively. The main outcome measurements were myelosuppression and dose-limiting toxicity. These were analyzed for relationships with the three genotypes. RESULTS: Forty-five patients were enrolled (10 CC, 21 CT, and 14 TT genotypes) and received 100 mg/m2 of epirubicin in the first cycle. Twelve and 10 TT patients were dose escalated at the second and third cycles, respectively; 16 CT patients were dose escalated at the second and third cycles. Leukopenia, but not febrile neutropenia, was genotype and dose dependent and increased in patients with CT and TT genotypes as their dose was increased. However, the third-cycle leukopenia rates were comparable to patients with the CC genotype receiving standard-dose epirubicin. CONCLUSION: Pharmacogenetically guided epirubicin dosing is well tolerated and allowed dose escalation without increased toxicity.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Epirubicin/therapeutic use , Glucuronosyltransferase/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Cyclophosphamide/therapeutic use , Female , Glucuronosyltransferase/metabolism , Humans , Middle Aged , Polymorphism, Genetic
4.
Clin Transl Sci ; 14(3): 847-858, 2021 05.
Article in English | MEDLINE | ID: mdl-33278334

ABSTRACT

Positron emission tomography (PET) using 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG), a marker of energy metabolism and cell proliferation, is routinely used in the clinic to assess patient response to chemotherapy and to monitor tumor growth. Treatment with some tyrosine kinase inhibitors (TKIs) causes changes in blood glucose levels in both nondiabetic and diabetic patients. We evaluated the interaction of several classes of TKIs with human glucose transporter-1 (hGLUT-1) in FaDu and GIST-1 cells by measuring [3 H]2-deoxy-d-glucose ([3 H]2-DG) and [3 H]FDG uptake. Uptake of both was inhibited to varying extents by the TKIs, and representative TKIs from each class showed competitive inhibition of [3 H]2-DG uptake. In GIST-1 cells, [3 H]FDG uptake inhibition by temsirolimus and nilotinib was irreversible, whereas inhibition by imatinib, gefitinib, and pazopanib was reversible. Molecular modeling studies showed that TKIs form multiple hydrogen bonds with polar residues of the sugar binding site (i.e., Q161, Q282, Q283, N288, N317, and W388), and van der Waals interactions with the H-pocket site. Our results showed interaction of TKIs with amino acid residues at the glucose binding site to inhibit glucose uptake by hGLUT-1. We hypothesize that inhibition of hGLUT-1 by TKIs could alter glucose levels in patients treated with TKIs, leading to hypoglycemia and fatigue, although further studies are required to evaluate roles of other SLC2 and SLC5 members. In addition, TKIs could affect tumor [18 F]FDG uptake, increasingly used as a marker of tumor response. The hGLUT-1 inhibition by TKIs may have implications for routine [18 F]FDG-PET monitoring of tumor response in patients.


Subject(s)
Fluorodeoxyglucose F18/pharmacology , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Positron-Emission Tomography/methods , Protein Kinase Inhibitors/pharmacology , Binding Sites , Cell Line, Tumor , Drug Interactions , Glucose Transporter Type 1/ultrastructure , Humans , Molecular Docking Simulation , Protein Binding
5.
Clin Nutr ESPEN ; 40: 263-268, 2020 12.
Article in English | MEDLINE | ID: mdl-33183547

ABSTRACT

BACKGROUND & AIMS: Pre-clinical studies suggest that 16:4(n-3) in purified form or as a component of fish oil might induce platinum-based chemotherapy resistance. Our aim was to determine plasma total and free 16:4(n-3) before and during platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients supplemented with fish oil or provided standard care, and to explore relationships between plasma 16:4(n-3) levels and tumor response to treatment. METHODS: In a retrospective, secondary data analysis of a prior clinical trial, plasma from patients with NSCLC (n = 21) who underwent platinum-based chemotherapy and were assigned to 2.2 g/day of eicosapentaenoic (EPA) plus 1.1 g DHA/day as fish oil (FO; n = 12) or received no intervention (standard care; SC; n = 9). Plasma 16:4(n-3) was quantified as free and esterified (total) fatty acid using HPLC-MS/MS. Plasma 16:4(n-3) levels were evaluated over time in relation to fish oil supplementation and response to platinum-based therapy, and compared with a group of healthy subjects (REF; n = 11). RESULTS: Plasma 16:4(n-3) was detected in all samples. The percentage change/day in plasma esterified (total) 16:4(n-3) was higher for FO versus SC group (2.7 versus -1.8%/d, U = 20, p = 0.02), but change in plasma free 16:4(n-3) was not different between FO and SC. Median plasma free and esterified 16:4(n-3) were similar between responders and non-responders to platinum-based chemotherapy. Total and free plasma 16:4(n-3) fatty acids were similar between NSCLC patients and REF (NSCLC vs REF: total 16:4(n-3): 122.9 vs. 95.2 nM and free 16:4(n-3) 23.9 vs. 27.6 nM). CONCLUSIONS: This first of its kind study that evaluated plasma 16:4(n-3) in NSCLC patients showed that 16:4 (n-3) was elevated during FO supplementation, independent of fish oil supplementation or platinum-based chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids , Humans , Lung Neoplasms/drug therapy , Pilot Projects , Platinum , Retrospective Studies , Tandem Mass Spectrometry
6.
Pharmaceuticals (Basel) ; 12(1)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781409

ABSTRACT

The benefits of PET imaging of tumor hypoxia in patient management has been demonstrated in many examples and with various tracers over the last years. Although, the optimal hypoxia imaging agent has yet to be found, 2-nitroimidazole (azomycin) sugar derivatives-mimicking nucleosides-have proven their potential with [18F]FAZA ([18F]fluoro-azomycin-α-arabinoside) as a prominent representative in clinical use. Still, for all of these tracers, cellular uptake by passive diffusion is postulated with the disadvantage of slow kinetics and low tumor-to-background ratios. We recently evaluated [18F]fluoro-azomycin-ß-deoxyriboside (ß-[18F]FAZDR), with a structure more similar to nucleosides than [18F]FAZA and possible interaction with nucleoside transporters. For a deeper insight, we comparatively studied the interaction of FAZA, ß-FAZA, α-FAZDR and ß-FAZDR with nucleoside transporters (SLC29A1/2 and SLC28A1/2/3) in vitro, showing variable interactions of the compounds. The highest interactions being for ß-FAZDR (IC50 124 ± 33 µM for SLC28A3), but also for FAZA with the non-nucleosidic α-configuration, the interactions were remarkable (290 ± 44 µM {SLC28A1}; 640 ± 10 µM {SLC28A2}). An improved synthesis was developed for ß-FAZA. For a PET study in tumor-bearing mice, α-[18F]FAZDR was synthesized (radiochemical yield: 15.9 ± 9.0% (n = 3), max. 10.3 GBq, molar activity > 50 GBq/µmol) and compared to ß-[18F]FAZDR and [18F]FMISO, the hypoxia imaging gold standard. We observed highest tumor-to-muscle ratios (TMR) for ß-[18F]FAZDR already at 1 h p.i. (2.52 ± 0.94, n = 4) in comparison to [18F]FMISO (1.37 ± 0.11, n = 5) and α-[18F]FAZDR (1.93 ± 0.39, n = 4), with possible mediation by the involvement of nucleoside transporters. After 3 h p.i., TMR were not significantly different for all 3 tracers (2.5⁻3.0). Highest clearance from tumor tissue was observed for ß-[18F]FAZDR (56.6 ± 6.8%, 2 h p.i.), followed by α-[18F]FAZDR (34.2 ± 7.5%) and [18F]FMISO (11.8 ± 6.5%). In conclusion, both isomers of [18F]FAZDR showed their potential as PET hypoxia tracers. Differences in uptake behavior may be attributed to a potential variable involvement of transport mechanisms.

7.
Biochem Pharmacol ; 155: 162-171, 2018 09.
Article in English | MEDLINE | ID: mdl-29983397

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have advanced cancer treatment and prognosis but have also resulted in adverse effects such as fatigue, diarrhea, hypothyroidism, and other toxicities. We investigated TKI effects on skeletal muscle as a possible explanation of TKI induced fatigue. Changes in mitochondrial function due to inhibition of oxidative phosphorylation complexes, generation of superoxides, and inhibition of key transporters involved in uptake of glucose and/or nucleosides may result in alteration of energy metabolism and/or mitochondrial function. We investigated effects of imatinib, sorafenib and sunitinib on these processes in cultured C2C12 murine skeletal muscle cells. Imatinib, sorafenib and sunitinib were cytotoxic to C2C12 cells with IC50 values of 20, 8 and 8 µM, respectively. Imatinib stimulated glucose uptake and inhibited complex V activity by 35% at 50 µM. Sorafenib inhibited complex II/III and V with IC50 values of 32 and 28 µM, respectively. Sorafenib caused activation of caspase 3/7 and depolarization of mitochondrial membranes occurred very rapidly with complete loss at 5-10 µM. Sunitinib inhibited Complex I with an IC50 value of 38 µM and caused ATP depletion, caspase 3/7 activation, an increase in reactive oxygen species (ROS), and decreased nucleoside and glucose uptake. In conclusion, imatinib, sunitinib and sorafenib caused changes in mitochondrial complex activities, glucose and nucleoside uptake leading to decreased energy production and mitochondrial function in a skeletal muscle cell model, suggesting that these changes may play a role in fatigue, one of the most common adverse effects of TKIs.


Subject(s)
Energy Metabolism/drug effects , Imatinib Mesylate/toxicity , Muscle Fibers, Skeletal/drug effects , Protein Kinase Inhibitors/toxicity , Sorafenib/toxicity , Sunitinib/toxicity , Animals , Cell Line , Cells, Cultured , Cytotoxins/toxicity , Dose-Response Relationship, Drug , Energy Metabolism/physiology , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myoblasts/drug effects , Myoblasts/metabolism
8.
Bioorg Med Chem ; 24(21): 5326-5339, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27614920

ABSTRACT

Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6'-deoxy-6'-[18F]fluoro-ß-d-allofuranosyl)-2-nitroimidazole (ß-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (ß-6) in a final radiochemical yield of 12±8% (n=10, based on [18F]fluoride starting activity) in a total synthesis time of 60min with a specific activity at end of synthesis of 218±58GBq/µmol (n=10). Both radiolabeling precursor ß-6 and unlabeled reference compound ß-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of ß-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of ß-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice ß-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13±0.22 (n=4) at 2h after administration of ß-[18F]1. In ex vivo autoradiography experiments ß-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, ß-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.


Subject(s)
Hypoxia/diagnostic imaging , Imidazoles/analysis , Imidazoles/chemistry , Monosaccharides/analysis , Monosaccharides/chemistry , Neoplasms/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/analysis , Radiopharmaceuticals/chemical synthesis , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Hypoxia/pathology , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Mice , Molecular Structure , Monosaccharides/chemical synthesis , Monosaccharides/pharmacokinetics , Neoplasms/pathology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution
9.
J Biol Chem ; 291(36): 18809-17, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27432881

ABSTRACT

Human nucleoside transporters (hNTs) mediate cellular influx of anticancer nucleoside drugs, including cytarabine, cladribine, and fludarabine. BCR-ABL tyrosine kinase inhibitors (TKIs) imatinib and dasatinib inhibit fludarabine and cytarabine uptake. We assessed interactions of bosutinib, dasatinib, imatinib, nilotinib, and ponatinib with recombinant hNTs (hENT1, 2; hCNT1, -2, and -3) produced individually in yeast Saccharomyces cerevisiae Nilotinib inhibited hENT1-mediated uridine transport most potently (IC50 value, 0.7 µm) followed by ponatinib > bosutinib > dasatinib > imatinib. Imatinib inhibited hCNT2 with an IC50 value of 2.3 µm Ponatinib inhibited all five hNTs with the greatest effect seen for hENT1 (IC50 value, 9 µm). TKIs inhibited [(3)H]uridine uptake in a competitive manner. Studies in yeast with mutants at two amino acid residues of hENT1 (L442I, L442T, M33A, M33A/L442I) previously shown to be involved in uridine and dipyridamole binding, suggested that BCR-ABL TKIs interacted with Met(33) (TM1) and Leu(442) (TM11) residues of hENT1. In cultured human CEM lymphoblastoid cells, which possess a single hNT type (hENT1), accumulation of [(3)H]cytarabine, [(3)H]cladribine, or [(3)H]fludarabine was reduced by each of the five TKIs, and also caused a reduction in cell surface expression of hENT1 protein. In conclusion, BCR-ABL TKIs variously inhibit five different hNTs, cause a decrease in cell surface hENT1 expression, and decrease uridine accumulation when presented together with uridine or when given before uridine. In experiments with mutant hENT1, we showed for the first time interaction of Met(33) (involved in dipyridamole binding) with BCR-ABL inhibitors and reduced interaction with M33A mutant hENT1.


Subject(s)
Antineoplastic Agents/chemistry , Equilibrative Nucleoside Transporter 1/chemistry , Fusion Proteins, bcr-abl/antagonists & inhibitors , Mutation, Missense , Protein Kinase Inhibitors/chemistry , Amino Acid Substitution , Antineoplastic Agents/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Fusion Proteins, bcr-abl/chemistry , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Clin Breast Cancer ; 16(2): 139-44.e1-3, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26452313

ABSTRACT

BACKGROUND: Epirubicin is metabolized by uridine glucuronosyltransferase 2B7 (UGT2B7), an enzyme rich in single nucleotide polymorphisms (SNPs). We studied whether the -161 C > T germline SNP in UGT2B7 was related to epirubicin metabolism and whether differences exist in the toxicity and efficacy of epirubicin-based chemotherapy among patients who were TT homozygotes, CT heterozygotes, and CC homozygotes. PATIENTS AND METHODS: A total of 132 women with non-metastatic breast cancer receiving FEC (5-fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2), cyclophosphamide 500 mg/m(2)) were prospectively enrolled. Toxicity was assessed in cycle 1 using the National Cancer Institute Common Toxicity Criteria, version 2.0. RESULTS: The sequence at -161 was studied in 132 subjects; 37 were TT homozygotes, 63 were CT heterozygotes, 26 were CC homozygotes, and 6 could not be genotyped. The CC genotype patients had decreased epirubicin clearance (median, 103.3 L/hr) compared with the CT/TT genotype patients (median, 134.0 L/hr; P = .002). The CC homozygous patients had an increased risk of grade 3 to 4 leukopenia compared with the TT homozygotes or heterozygotes (P = .038 and P = .032, respectively). TT homozygotes or heterozygotes had an increased risk of early recurrence (P = .039; χ(2) test). CONCLUSION: The results of the present prospective pharmacogenetic study suggest that the UGT2B7 -161 C > T SNP correlate with drug metabolism, toxicity, and efficacy in patients receiving epirubicin chemotherapy. Further studies of this UGT2B7 SNP as a predictor of epirubicin toxicity and efficacy are warranted.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Glucuronosyltransferase/genetics , Neoplasm Recurrence, Local/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cyclophosphamide/administration & dosage , Epirubicin/administration & dosage , Female , Fluorouracil/administration & dosage , Follow-Up Studies , Genotype , Humans , Immunoenzyme Techniques , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Prospective Studies , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Survival Rate
11.
Cancer Chemother Pharmacol ; 76(5): 1093-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26330332

ABSTRACT

PURPOSE: Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1). METHODS: Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose-response curves for inhibition of 1 µM [(3)H]adenine or 1 µM [(3)H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0-100 µM) to calculate the IC50 values (mean ± S.E) for inhibition. RESULTS: Gefitinib inhibited ENBT activity with an IC50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib > sorafenib > imatinib > sunitinib inhibited ENBT with IC50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations >100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib > erlotinib > gefitinib > sunitinib > imatinib with IC50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations >100 µM. CONCLUSIONS: These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.


Subject(s)
Adenine/metabolism , Antineoplastic Agents/pharmacology , Biological Transport/drug effects , Kidney Tubules, Proximal/drug effects , Nucleobase Transport Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Sodium/physiology , Animals , Antineoplastic Agents/pharmacokinetics , Binding, Competitive , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Inhibitory Concentration 50 , Kidney Tubules, Proximal/metabolism , Neoplasm Proteins/antagonists & inhibitors , Nucleobase Transport Proteins/classification , Protein Kinase Inhibitors/classification , Protein Kinase Inhibitors/pharmacokinetics , Sus scrofa , Swine
12.
Cancer Chemother Pharmacol ; 76(1): 117-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25986679

ABSTRACT

PURPOSE: Determining renal function is important for chemotherapy eligibility and dosing. Measured creatinine clearance (mCrCl) is the gold standard but is cumbersome. Equations estimating CrCl (eCrCl) based on serum creatinine (SCr) produce widely varying estimates. Considering that SCr is derived from skeletal muscle, this study prospectively developed a new eCrCl equation in cancer patients using CT-defined muscle surface area (MSA) and evaluated its utility in a separate, retrospective series. METHODS: In a prospective, observational cohort study of cancer patients, mCrCl by 24-h urine collection was correlated with CT-determined MSA to create an equation for eCrCl [muscle surface area (cm(2)) × 42/SCr]. eCrCl by Wright, Cockcroft-Gault (CG), CKD-EPI, MDRD, and MSA was compared to mCrCl to determine fit. MSA-eCrCl was used to simulate carboplatin dosing in a retrospective series of advanced non-small cell lung cancer (NSCLC). RESULTS: Prospectively, 22 patients were accrued and evaluable (12 males; median age 69). MSA-eCrCl correlated stronger (r (2) 0.80) than current equations (r (2) 0.47-0.69) with mCrCl. In calculating carboplatin doses for 89 NSCLC patients with MSA and CG-eCrCl, median error of CG-determined carboplatin dose was 5.5 % (range -19.0 to 44.2 %), assuming that MSA was better at estimating CrCl. Forty-two patients (47 %) received doses that varied ≥10 % of what was calculated by MSA. CONCLUSIONS: We propose a new formula for eCrCl in patients that appears more accurate than current formulae and may have implications for chemotherapy efficacy and toxicity. Studies to validate this formula are under way.


Subject(s)
Carcinoma, Non-Small-Cell Lung/urine , Creatinine/urine , Lung Neoplasms/urine , Renal Insufficiency/urine , Aged , Antineoplastic Agents/administration & dosage , Carboplatin/administration & dosage , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Cohort Studies , Creatinine/blood , Female , Glomerular Filtration Rate/physiology , Humans , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Male , Middle Aged , Models, Biological , Prospective Studies , Renal Insufficiency/blood , Retrospective Studies
13.
Mol Cancer Ther ; 14(1): 236-45, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25519698

ABSTRACT

Multitargeted tyrosine kinase inhibitors (TKI) axitinib, pazopanib, and sunitinib are used to treat many solid tumors. Combination trials of TKIs with gemcitabine, a nucleoside anticancer drug, in pancreas, renal, lung, ovarian, and other malignancies resulted in little benefit to patients. TKI interactions with human nucleoside transporters (hNT) were studied by assessing inhibition of [(3)H]uridine uptake in yeast producing recombinant hNTs individually and in cultured human cancer cell lines. Axitinib, pazopanib, and sunitinib inhibited hENT1 at low micromolar concentrations. In A549, AsPC-1, and Caki-1 cells, [(3)H]uridine, [(3)H]thymidine, [(3)H]gemcitabine, and [(3)H]fluorothymidine (FLT) accumulation was blocked by all three TKIs. Pazopanib > axitinib ≥ sunitinib inhibited hENT1 with IC50 values of 2, 7, and 29 µmol/L, respectively, leading to reduced intracellular gemcitabine and FLT accumulation. Pretreatment or cotreatment of Caki-1 cells with TKIs reduced cellular accumulation of [(3)H]nucleosides, suggesting that TKI scheduling with nucleoside drugs would influence cytotoxicity. In combination cytotoxicity experiments that compared sequential versus simultaneous addition of drugs in Caki-1 cells, cytotoxicity was greatest when gemcitabine was added before TKIs. In clinical settings, TKI inhibitor concentrations in tumor tissues are sufficient to inhibit hENT1 activity, thereby reducing nucleoside chemotherapy drug levels in cancer cells and reducing efficacy in combination schedules. An additional unwanted interaction may be reduced FLT uptake in tumor tissues that could lead to aberrant conclusions regarding tumor response.


Subject(s)
Deoxycytidine/pharmacology , Neoplasms/metabolism , Nucleoside Transport Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Axitinib , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Drug Synergism , Humans , Imidazoles/pharmacology , Indazoles/pharmacology , Indoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Sunitinib , Gemcitabine
14.
Clin Cancer Res ; 20(1): 176-86, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24170548

ABSTRACT

PURPOSE: Combinations of tyrosine kinase inhibitors (TKI) with gemcitabine have been attempted with little added benefit to patients. We hypothesized that TKIs designed to bind to ATP-binding pockets of growth factor receptors also bind to transporter proteins that recognize nucleosides. EXPERIMENTAL DESIGN: TKI inhibition of uridine transport was studied with recombinant human (h) equilibrative (E) and concentrative (C) nucleoside transporters (hENT, hCNT) produced individually in yeast. TKIs effects on uridine transport, gemcitabine accumulation, regulation of hENT1 activity, and cell viability in the presence or absence of gemcitabine were evaluated in human pancreatic and lung cancer cell lines. RESULTS: Erlotinib, gefitinib and vandetanib inhibited [(3)H]uridine transport in yeast and [(3)H]uridine and [(3)H]gemcitabine uptake in the four cell lines. Treatment of cell lines with erlotinib, gefitinib, or vandetanib for 24 hours reduced hENT1 activity which was reversed by subsequent incubation in drug-free media for 24 hours. Greater cytotoxicity was observed when gemcitabine was administered before erlotinib, gefitinib, or vandetanib than when administered together and synergy, evaluated using the CalcuSyn Software, was observed in three cell lines resulting in combination indices under 0.6 at 50% reduction of cell growth. CONCLUSIONS: Vandetanib inhibited hENT1, hENT2, hCNT1, hCNT2, and hCNT3, whereas erlotinib inhibited hENT1 and hCNT3 and gefitinib inhibited hENT1 and hCNT1. The potential for reduced accumulation of nucleoside chemotherapy drugs in tumor tissues due to inhibition of hENTs and/or hCNTs by TKIs indicates that pharmacokinetic properties of these agents must be considered when scheduling TKIs and nucleoside chemotherapy in combination.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Nucleoside Transport Proteins/antagonists & inhibitors , Piperidines/pharmacology , Quinazolines/pharmacology , Antimetabolites, Antineoplastic/metabolism , Biological Transport , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/metabolism , Deoxycytidine/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , Erlotinib Hydrochloride , Gefitinib , Humans , Inhibitory Concentration 50 , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Uridine/metabolism , Gemcitabine
15.
Biochem Cell Biol ; 91(6): 419-27, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24219283

ABSTRACT

The goal of this study was to understand roles of nucleoside and nucleobase transport processes in capecitabine pharmacology in cells derived from human renal proximal tubule cells (hRPTCs) and three human renal cell carcinoma (RCC) cell lines, A498, A704, and Caki-1. Human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) mediated activities and a sodium-independent nucleobase activity were present in hRPTCs. In hRPTCs, uptake of 5'-deoxy-5-fluorouridine (DFUR), a nucleoside metabolite of capecitabine, was pH dependent with highest uptake seen at pH 6.0. In RCC cell lines, hENT1 was the major nucleoside transporter. Nucleobase transport activity was variable among the three RCC cell lines, with Caki-1 showing the highest and A498 showing the lowest activities. Treatment of RCC cell lines with interferon alpha (IFN-α) increased thymidine phosphorylase levels and prior treatment of RCC cell lines with IFN-α followed by 5-FU or DFUR resulted in enhanced sensitivity of all cell lines to 5-FU and two of three cell lines to DFUR. We report for the first time a nucleobase transport activity in hRPTCs and RCC cell lines. In addition, our in vitro cytotoxicity results showed that RCC cell lines differed in their response to 5-FU and DFUR and prior treatment with IFN-α potentiated cytotoxic response to metabolites of capecitabine.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Floxuridine/pharmacology , Fluorouracil/analogs & derivatives , Gene Expression Regulation, Neoplastic/drug effects , Kidney Tubules, Proximal/drug effects , Antimetabolites, Antineoplastic/metabolism , Biological Transport/drug effects , Biotransformation , Capecitabine , Cell Line, Tumor , Deoxycytidine/metabolism , Deoxycytidine/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2 , Floxuridine/metabolism , Fluorouracil/metabolism , Fluorouracil/pharmacology , Humans , Hydrogen-Ion Concentration , Interferon-alpha/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kinetics , Nucleosides/metabolism , Signal Transduction , Thymidine Phosphorylase/genetics , Thymidine Phosphorylase/metabolism
16.
J Pharmacol Exp Ther ; 347(2): 388-97, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24006340

ABSTRACT

3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 ((10)B) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level. N5-2OH entered cultured human CCRF-CEM cells via passive diffusion, whereas the multidrug resistance-associated protein 4 appeared to be a major mediator of N5-2OH monophosphate efflux. N5-2OH was effectively monophosphorylated in cultured murine L929 [thymidine kinase 1 (TK1(+))] cells whereas formation of N5-2OH monophosphate was markedly lower in L929 (TK1(-)) cell variants. Further metabolism to the di- and triphosphate forms was not observed in any of the cell lines. Regardless of monophosphorylation, parental N5-2OH was the major intracellular component in both TK1(+) and TK1(-) cells. Phosphate transfer experiments with enzyme preparations showed that N5-2OH monophosphate, as well as the monophosphate of a second 3-carboranyl thymidine analog [3-[5-(o-carboran-1-yl)pentan-1-yl]thymidine (N5)], were not substrates of thymidine monophosphate kinase. Surprisingly, N5-diphosphate was phosphorylated by nucleoside diphosphate kinase although N5-triphosphate apparently was not a substrate of DNA polymerase. Our results provide valuable information on the cellular metabolism and pharmacokinetic profile of 3-carboranyl thymidine analogs.


Subject(s)
Boron Compounds/administration & dosage , Boron Compounds/metabolism , Boron Neutron Capture Therapy , Nucleoside Transport Proteins/metabolism , Thymidine Kinase/metabolism , Thymidine/analogs & derivatives , Animals , Biological Transport , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Neutron Capture Therapy/methods , Cell Line , Cell Survival/drug effects , Humans , Mice , Molecular Structure , Multidrug Resistance-Associated Proteins/metabolism , Nucleoside Transport Proteins/genetics , Phosphorylation , Saccharomyces cerevisiae/genetics , Substrate Specificity , Thymidine/administration & dosage , Thymidine/chemistry , Thymidine/metabolism , Thymidine/pharmacology , Transfection
17.
Drug Metab Dispos ; 41(4): 916-22, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23388705

ABSTRACT

The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacokinetics , Adenosine/analogs & derivatives , Blood-Brain Barrier/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Furans/pharmacokinetics , Nucleoside Transport Proteins/metabolism , Prodrugs/pharmacology , Thioinosine/analogs & derivatives , Adenosine/pharmacokinetics , Affinity Labels/pharmacology , Animals , Biological Transport/drug effects , Brain/metabolism , Cells, Cultured , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Humans , Membrane Transport Modulators/pharmacology , Mice , Thioinosine/pharmacology
18.
Article in English | MEDLINE | ID: mdl-22356238

ABSTRACT

The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2'-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K (i) values, 3-26 µM), hENT1/2 and hCNT2 weakly (K (i) values, 0.5-3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [(3)H]gemcitabine, [(14)C]azacitidine, and [(3)H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC (50) values, µM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ≫ hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ⋙ hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.


Subject(s)
Azacitidine/analogs & derivatives , Azacitidine/pharmacokinetics , Azacitidine/toxicity , Equilibrative Nucleoside Transporter 1/metabolism , Membrane Transport Proteins/metabolism , Animals , Azacitidine/metabolism , Carbon Radioisotopes/metabolism , Decitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/metabolism , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Humans , Oocytes/metabolism , Saccharomyces cerevisiae , Tritium/metabolism , Xenopus , Gemcitabine
19.
Chembiochem ; 12(18): 2774-8, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22052809

ABSTRACT

The conformational preference of human nucleoside transporters (hNTs) with respect to sugar ring was examined using conformationally fixed purine and pyrimidine nucleosides built on a bicyclo[3.1.0]hexane template. These fixed-conformation nucleosides, methanocarba-deoxyadenosine or methanocarba-deoxycytidine in North (C3'-endo, N-MCdA and N-MCdC) or South (C2'-endo, S-MCdA and S-MCdC) conformations, were used to study inhibition of equilibrative (hENT1-4) and concentrative (hCNT1-3) nucleoside transport by individual recombinant hNTs produced in Saccharomyces cerevisiae cells or Xenopus laevis oocytes. Our results indicated that nucleosides in the North conformation were potent inhibitors of transport mediated by hCNTs whereas South nucleosides were inhibitors of hENTs, thus showing differences in the interaction with the hNTs. In summary, hCNTs exhibited strong preferences for North nucleosides whereas hENTs exhibited slight preferences for South nucleosides, demonstrating for the first time different conformational preferences among members of the two families of hNTs.


Subject(s)
Carbohydrates/chemistry , Nucleoside Transport Proteins/metabolism , Nucleosides/metabolism , Animals , Carbohydrate Conformation , Humans , Saccharomyces cerevisiae/metabolism , Xenopus laevis
20.
Curr Top Med Chem ; 11(8): 948-72, 2011.
Article in English | MEDLINE | ID: mdl-21401500

ABSTRACT

Pyrimidine and purine nucleosides and their derivatives have critical functions and pharmacological applications in the brain. Nucleosides and nucleobases are precursors of nucleotides, which serve as the energy-rich currency of intermediary metabolism and as precursors of nucleic acids. Nucleosides (e.g., adenosine) and nucleotides are key signaling molecules that modulate brain function through interaction with cell surface receptors. Brain pathologies involving nucleosides and their metabolites range from epilepsy to neurodegenerative disorders and psychiatric conditions to cerebrovascular ischemia. Nucleoside analogs are used clinically in the treatment of brain cancer and viral infections. Nucleosides are hydrophilic molecules, and transportability across cell membranes via specialized nucleoside transporter (NT) proteins is a critical determinant of their metabolism and, for nucleoside drugs, their pharmacologic actions. In mammals, there are two types of nucleoside transport process: bidirectional equilibrative processes driven by chemical gradients, and unidirectional concentrative processes driven by sodium (and proton) electrochemical gradients. In mammals, these processes, both of which are present in brain, are mediated by members of two structurally unrelated membrane protein families (ENT and CNT, respectively). In this Chapter, we review current knowledge of cellular, physiological, pathophysiological and therapeutic aspects of ENT and CNT distribution and function in the mammalian brain, including studies with NT inhibitors and new research involving NT knockout and transgenic mice. We also describe recent progress in functional and molecular studies of ENT and CNT proteins, and summarize emerging evidence of other transporter families with demonstrated or potential roles in the transport of nucleosides and their derivatives in the brain.


Subject(s)
Anion Transport Proteins/metabolism , Brain/metabolism , Nucleoside Transport Proteins/metabolism , Nucleosides , Protein Isoforms/metabolism , Proton Pumps/metabolism , Animals , Anion Transport Proteins/genetics , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Brain/physiopathology , Cell Membrane/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Epilepsy/physiopathology , Humans , Mice , Mice, Knockout , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Nucleoside Transport Proteins/classification , Nucleoside Transport Proteins/genetics , Nucleosides/metabolism , Nucleosides/pharmacology , Protein Isoforms/genetics , Proton Pumps/genetics , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Psychotic Disorders/physiopathology , Rats , Signal Transduction , Structure-Activity Relationship , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...