Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 20(10): 2310-2320, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38363303

ABSTRACT

We investigate the collective behavior of sterically interacting self-propelled particles confined in a harmonic potential. Our theoretical and numerical study unveils the emergence of distinctive collective polar organizations, revealing how different levels of interparticle torques and noise influence the system. The observed phases include the shear-banded vortex, where the system self organizes in two concentric bands rotating in opposite directions around the potential center; the uniform vortex, where the two bands merge into a close packed configuration rotating uniformly as a quasi-rigid body; and the orbiting polar state, characterized by parallel orientation vectors and the cluster revolving around the potential center, without rotation, as a rigid body. Intriguingly, at lower filling fractions, the vortex and polar phases merge into a single phase where the trapped cluster breaks into smaller polarized clusters, each one orbiting the potential center as a rigid body.

2.
Phys Rev E ; 108(4-1): 044605, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978690

ABSTRACT

Active particles, like motile microorganisms and active colloids, are often found in confined environments where they can be arrested in a persistent orbital motion. Here, we investigate noise-induced switching between different coexisting orbits of a confined active particle as a stochastic escape problem. We show that, in the low-noise regime, this problem can be formulated as a least-action principle, which amounts to finding the most probable escape path from an orbit to the basin of attraction of another coexisting orbit. The corresponding action integral coincides with the activation energy, a quantity readily accessible in experiments and simulations via escape rate data. To illustrate how this approach can be used to tackle specific problems, we calculate optimum escape paths and activation energies for noise-induced transitions between clockwise and counterclockwise circular orbits of an active particle in radially symmetric confinement. We also investigated transitions between orbits of different topologies (ovals and lemniscates) coexisting in elliptic confinement. In all worked examples, the calculated optimum paths and minimum actions are in excellent agreement with mean-escape-time data obtained from direct numerical integration of the Langevin equations.

3.
Phys Rev E ; 105(6-1): 064608, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854513

ABSTRACT

We investigate theoretically the dynamics of a confined active swimmer with velocity and orientation axis coupled to each other via a self-alignment torque. For an isotropic harmonic potential, this system is known to exhibit two distinct dynamical phases: a climbing one, where the particle is oriented radially and undergoes angular Brownian motion, and a circularly orbiting phase. Here we show that for nonradially symmetric confinement an assortment of complex phenomena emerge. For an elliptic harmonic potential the orbiting phase splits into several periodic orbits with a diversity of shapes: ovals, lemniscates, and generalized lemniscates with multiple lobes. These orbits can coexist in the parameter space and decay into one another induced by noise. For anharmonic confining potentials, we report transitions from periodic to chaotic dynamics, as one changes the intensity of the self-alignment torque and noise-induced complex orbits. These results demonstrate that the combination of the shape of the trapping potential and self-alignment torque can induce a rich variety of nontrivial dynamical states of a confined active particle.

SELECTION OF CITATIONS
SEARCH DETAIL
...